Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 322: 121665, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028546

RESUMO

AIMS: Berberine is endowed with anti-oxidant, anti-inflammatory and anti-fibrotic effects. This study explored the role of adenosine A2a receptor (A2aR) activation and SDF-1/CXCR4 signaling suppression in the protective effects of berberine in bleomycin-induced pulmonary fibrosis in mice. MAIN METHODS: Pulmonary fibrosis was generated in mice by injecting bleomycin (40 U/kg, i.p.) on days 0, 3, 7, 10 and 14. Mice were treated with berberine (5 mg/kg, i.p.) from day 15 to day 28. KEY FINDINGS: Severe lung fibrosis and increased collagen content were observed in the bleomycin-challenged mice. Pulmonary A2aR downregulation was documented in bleomycin-induced pulmonary fibrosis animals and was accompanied by enhanced expression of SDF-1/CXCR4. Moreover, TGF-ß1elevation and pSmad2/3 overexpression were reported in parallel with enhanced epithelial mesenchymal transition (EMT) markers expression, vimentin and α-SMA. Besides, bleomycin significantly elevated the inflammatory and pro-fibrogenic mediator NF-κB p65, TNF-α and IL-6. Furthermore, bleomycin administration induced oxidative stress as depicted by decreased Nrf2, SOD, GSH and catalase levels. Interestingly, berberine administration markedly ameliorated the fibrotic changes in lungs by modulating the purinergic system through the inhibition of A2aR downregulation, mitigating EMT and effectively suppressing inflammation and oxidative stress. Strikingly, A2aR blockade by SCH 58261, impeded the pulmonary protective effect of berberine. SIGNIFICANCE: These findings indicated that berberine could attenuate the pathological processes of bleomycin-induced pulmonary fibrosis at least partially via upregulating A2aR and mitigating the SDF-1/CXCR4 related pathway, suggesting A2aR as a potential therapeutic target for the management of pulmonary fibrosis.


Assuntos
Berberina , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Bleomicina/toxicidade , Berberina/uso terapêutico , Transição Epitelial-Mesenquimal , Pulmão/metabolismo , Anti-Inflamatórios/farmacologia
2.
Life Sci ; 309: 121040, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208663

RESUMO

AIMS: Several signaling events have been identified for mediating cisplatin-induced chronic inflammation and progressive renal fibrosis, but the majority of them have not yet been established as therapeutic targets. This study investigated the modulatory effects of berberine on purinergic 2X7 receptors (P2X7R) and some potential intracellular profibrogenic signaling as molecular mechanisms that could hinder renal fibrosis associated with cisplatin administration in rats. MAIN METHODS: For induction of kidney injury, rats were injected with cisplatin (1 mg/kg, i.p.) daily for two weeks. Concurrently, the rats were treated with berberine (100 or 200 mg/kg, p.o). The gene expressions of P2X7R, dual-specificity phosphatase 6 (DUSP6), and murine double-minute 2 (MDM2) were determined. The expressions of alpha smooth-muscle actin and tumor necrosis factor alpha (TNF-α) were assessed by immunohistochemical staining. Phosphorylated extracellular signal-regulated kinase 1/2, (p-ERK1/2) was evaluated by western blotting. Sirtuin 2 (SIRT2), kidney injury molecule-1, and galectin-3 were measured by enzyme-linked immunosorbent assay. The degree of renal fibrosis was assessed by microscopic examination and picrosirius red staining. KEY FINDINGS: Berberine effectively inhibited cisplatin-induced renal histopathological changes, enhanced renal function, and markedly mitigated inflammatory and fibrotic alterations as well as TNF-α protein expression. Additionally, P2X7R, p-ERK1/2, MDM2, and SIRT2 were suppressed and DUSP6 was upregulated by berberine. SIGNIFICANCE: The nephroprotective effects of berberine were mediated in part by downregulating P2X7R and modulating DUSP6-mediated inactivation of ERK1/2 as well as by suppressing SIRT2/MDM2-triggered renal fibrosis.


Assuntos
Berberina , Nefropatias , Ratos , Camundongos , Animais , Cisplatino/toxicidade , Berberina/farmacologia , Sirtuína 2 , Fator de Necrose Tumoral alfa , Fosfatase 6 de Especificidade Dupla , Proteína Quinase 3 Ativada por Mitógeno , Sistema de Sinalização das MAP Quinases , Actinas , Galectina 3 , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Fibrose
3.
Psychopharmacology (Berl) ; 239(12): 3903-3917, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36287214

RESUMO

RATIONALE: Alteration of the NAD+ metabolic pathway is proposed to be implicated in lipopolysaccharide (LPS)-induced neurotoxicity and mitochondrial dysfunction in neurodegenerative diseases. Apigenin, a naturally-occurring flavonoid, has been reported to maintain NAD+ levels and to preserve various metabolic functions. OBJECTIVES: This study aimed to explore the effect of apigenin on mitochondrial SIRT3 activity as a mediator through which it could modulate mitochondrial quality control and to protect against intracerebrovascular ICV/LPS-induced neurotoxicity. METHODS: Mice received apigenin (40 mg/kg; p.o) for 7 consecutive days. One hour after the last dose, LPS (12 µg/kg, icv) was administered. RESULTS: Apigenin robustly guarded against neuronal degenerative changes and maintained a normal count of intact neurons in mice hippocampi. Consequently, it inhibited the deleterious effect of LPS on cognitive functions. Apigenin was effective in preserving the NAD+/NADH ratio to boost mitochondrial sirtuin-3 (SIRT3), activity, and ATP production. It conserved normal mitochondrial features via induction of the master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α), along with mitochondrial transcription factor A (TFAM) and the fusion proteins, mitofusin 2 (MFN2), and optic atrophy-1 (OPA1). Furthermore, it increased phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and parkin expression as well as the microtubule-associated protein 1 light chain 3 II/I ratio (LC3II/I) to induce degradation of unhealthy mitochondria via mitophagy. CONCLUSIONS: These observations reveal the marked neuroprotective potential of apigenin against LPS-induced neurotoxicity through inhibition of NAD+ depletion and activation of SIRT3 to maintain adequate mitochondrial homeostasis and function.


Assuntos
Disfunção Cognitiva , Síndromes Neurotóxicas , Sirtuína 3 , Animais , Camundongos , Apigenina/farmacologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Dinâmica Mitocondrial , Mitofagia , NAD/metabolismo , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/prevenção & controle , Proteínas Quinases/metabolismo , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia
4.
Arch Biochem Biophys ; 717: 109121, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065059

RESUMO

Acute liver failure (ALF) is considered a fatal clinical disorder and novel therapeutic interventions are mandatory. Naringenin is a flavonoid with anti-inflammatory, antioxidant and antiapoptotic effects that have displayed beneficial effects in different animal models of ALF. The current study aimed at investigating the hepatoprotective effect and the possible underlying molecular mechanisms of naringenin in lipopolysaccharide (LPS)/D-galactosamine (D-Gal) mouse model of ALF. Interestingly, naringenin pretreatment substantially alleviated LPS/D-Gal-induced liver injury, enhanced survival, improved liver function and ameliorated histopathological liver changes. Importantly, naringenin potently activated autophagy as evidenced by the increased Beclin-1 expression and LC3 II/LC3 I ratio. Furthermore, results demonstrated that naringenin alleviated oxidative stress by inducing nuclear factor-erythroid 2-related factor 2 (Nrf2) and increasing hepatic SOD activity and GSH level as well as ameliorated endoplasmic reticulum (ER) stress. Likewise, naringenin mitigated LPS/D-Gal-triggered inflammation by suppressing NF-κB and NLRP3 pathways. Accordingly, apoptotic cell death provoked by LPS/D-Gal challenge was markedly attenuated as depicted by the decrease in caspase-3 and p53 in naringenin-treated mice. To investigate the contribution of autophagy to naringenin-conferred hepatoprotection, autophagy was inhibited using 3-methyladenine (3 MA). Strikingly, 3 MA co-treatment abolished the hepatoprotective effect of naringenin, a finding that strongly suggests that naringenin-afforded protection is, at least in part, attributed to autophagy. Taken together, the present study revealed that naringenin exerted a prominent hepatoprotective effect by promoting autophagy with consequent attenuation of inflammatory responses, oxidative stress, ER stress and apoptosis. Our results provide evidence that naringenin use holds a promise as a potential therapeutic agent for ALF management.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Flavanonas/farmacologia , Galactosamina/metabolismo , Lipopolissacarídeos/metabolismo , Falência Hepática Aguda/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Caspase 3/metabolismo , Modelos Animais de Doenças , Humanos , Fígado , Falência Hepática Aguda/prevenção & controle , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fator 2 Relacionado a NF-E2 , NF-kappa B , Estresse Oxidativo , Transdução de Sinais , Superóxido Dismutase-1/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
Chem Biol Interact ; 331: 109276, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002459

RESUMO

Ulcerative colitis (UC) is a chronic disease driven primarily by uncontrolled pervasive inflammatory responses affecting the colon and rectum. Currently available medications carry multiple detrimental adverse effects, which have emphasized the mandatory need for safer and more efficient novel therapeutic alternatives. Melittin is the main constituent of bee venom and exhibits potent anti-inflammatory properties. The antiulcerogenic effect of oral melittin (40 µg/kg) was explored in the current study using the acetic acid-induced colitis model. Increase in body weight and decrease in colon mass index were observed in the melittin group. Microscopically, melittin ameliorated acetic acid-induced histological damage. Melittin administration has efficiently amended the elevated levels of the cytokines, tumor necrosis factor (TNF-α) and interleukin 6 (IL-6) seen in the colitis group. This was accompanied by inhibition of the upstream signaling molecules, Toll-like receptor 4 (TLR4), tumor necrosis factor receptor (TNF-R)-associated factor (TRAF6), mitogen-activated protein kinase 38 (p38 MAPK), and nuclear factor kappaB (NF-κB) in the melittin group. Moreover, treatment with melittin resulted in marked decrease in colonic level of prostaglandin E2 (PGE2) together with the enzymes involved in its synthesis, secretory phospholipase A2 (sPLA2) and cyclooxygenase 2 (COX-2). Additionally, melittin has attenuated acetic acid-induced oxidative stress as manifested by the significant diminishment in malondialdehyde (MDA) as well as the increase in superoxide dismutase (SOD) and reduced glutathione (GSH) levels. Therefore, melittin mitigated UC pathogenesis and could be considered as a potent and promising therapeutic alternative for UC treatment.


Assuntos
Antiulcerosos/farmacologia , Meliteno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo , Ácido Acético/toxicidade , Administração Oral , Animais , Antiulcerosos/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Ciclo-Oxigenase 2/metabolismo , Interleucina-6/metabolismo , Malondialdeído/metabolismo , Meliteno/uso terapêutico , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA