Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lasers Surg Med ; 55(3): 278-293, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36821717

RESUMO

BACKGROUND: Photobiomodulation (PBM) therapy, a form of low-dose light therapy, has been noted to be effective in several age-associated chronic diseases such as hypertension and atherosclerosis. Here, we examined the effects of PBM therapy on age-associated cardiovascular changes in a mouse model of accelerated cardiac aging. METHODS: Fourteen months old Adenylyl cyclase type VIII (AC8) overexpressing transgenic mice (n = 8) and their wild-type (WT) littermates (n = 8) were treated with daily exposure to Near-Infrared Light (850 nm) at 25 mW/cm2 for 2 min each weekday for a total dose of 1 Einstein (4.5 p.J/cm2 or fluence 3 J/cm2 ) and compared to untreated controls over an 8-month period. PBM therapy was administered for 3.5 months (Early Treatment period), paused, due to Covid-19 restrictions for the following 3 months, and restarted again for 1.5 months. Serial echocardiography and gait analyses were performed at monthly intervals, and serum TGF-ß1 levels were assessed following sacrifice. RESULTS: During the Early Treatment period PBM treatments: reduced the age-associated increases in left ventricular (LV) mass in both genotypes (p = 0.0003), reduced the LV end-diastolic volume (EDV) in AC8 (p = 0.04); and reduced the left atrial dimension in both genotypes (p = 0.02). PBM treatments substantially increased the LV ejection fraction (p = 0.03), reduced the aortic wall stiffness (p = 0.001), and improved gait symmetry, an index of neuro-muscular coordination (p = 0.005). The effects of PBM treatments, measured following the pause, persisted. Total TGF-ß1 levels were significantly increased in circulation (serum) in AC8 following PBM treatments (p = 0.01). We observed a striking increase in cumulative survival in PBM-treated AC8 mice (100%; p = 0.01) compared to untreated AC8 mice (43%). CONCLUSION: PBM treatment mitigated age-associated cardiovascular remodeling and reduced cardiac function, improved neuromuscular coordination, and increased longevity in an experimental animal model. These responses correlate with increased TGF-ß1 in circulation. Future mechanistic and dose optimization studies are necessary to assess these anti-aging effects of PBM, and validation in future controlled human studies is required for effective clinical translation.


Assuntos
COVID-19 , Terapia com Luz de Baixa Intensidade , Humanos , Camundongos , Animais , Lactente , Fator de Crescimento Transformador beta1 , Terapia com Luz de Baixa Intensidade/métodos , Envelhecimento , Coração
2.
Elife ; 112022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515265

RESUMO

Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TGAC8) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TGAC8, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TGAC8 was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TGAC8 vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TGAC8 did not differ from WT. Unbiased omics analyses identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, which differed by genotype; compared to WT, in TGAC8 there was a shift from fatty acid oxidation to aerobic glycolysis in the context of increased utilization of the pentose phosphate shunt and nucleotide synthesis. Thus, marked overexpression of AC8 engages complex, coordinate adaptation "circuity" that has evolved in mammalian cells to defend against stress that threatens health or life (elements of which have already been shown to be central to cardiac ischemic pre-conditioning and exercise endurance cardiac conditioning) that may be of biological significance to allow for proper healing in disease states such as infarction or failure of the heart.


Assuntos
Adaptação Fisiológica , Miócitos Cardíacos , Estresse Fisiológico , Animais , Camundongos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hipertrofia/fisiopatologia , Camundongos Transgênicos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Humanos
3.
Geroscience ; 44(6): 2801-2830, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35759167

RESUMO

The combined influences of sinoatrial nodal (SAN) pacemaker cell automaticity and its response to autonomic input determine the heart's beating interval variability and mean beating rate. To determine the intrinsic SAN and autonomic signatures buried within EKG RR interval time series change in advanced age, we measured RR interval variability before and during double autonomic blockade at 3-month intervals from 6 months of age until the end of life in long-lived (those that achieved the total cohort median life span of 24 months and beyond) C57/BL6 mice. Prior to 21 months of age, time-dependent changes in intrinsic RR interval variability and mean RR interval were relatively minor. Between 21 and 30 months of age, however, marked changes emerged in intrinsic SAN RR interval variability signatures, pointing to a reduction in the kinetics of pacemaker clock mechanisms, leading to reduced synchronization of molecular functions within and among SAN cells. This loss of high-frequency signal processing within intrinsic SAN signatures resulted in a marked increase in the mean intrinsic RR interval. The impact of autonomic signatures on RR interval variability were net sympathetic and partially compensated for the reduced kinetics of the intrinsic SAN RR interval variability signatures, and partially, but not completely, shifted the EKG RR time series intervals to a more youthful pattern. Cross-sectional analyses of other subsets of C57/BL6 ages indicated that at or beyond the median life span of our longitudinal cohort, noncardiac, constitutional, whole-body frailty was increased, energetic efficiency was reduced, and the respiratory exchange ratio increased. We interpret the progressive reduction in kinetics in intrinsic SAN RR interval variability signatures in this context of whole-body frailty beyond 21 months of age to be a manifestation of "heartbeat frailty."


Assuntos
Fragilidade , Animais , Camundongos , Frequência Cardíaca/fisiologia , Estudos Transversais , Nó Sinoatrial/fisiologia , Eletrocardiografia
4.
J Cereb Blood Flow Metab ; 41(7): 1579-1591, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33203296

RESUMO

Local cerebral blood flow (CBF) responses to neuronal activity are essential for cognition and impaired CBF responses occur in Alzheimer's disease (AD). In this study, regional CBF (rCBF) responses to the KATP channel opener diazoxide were investigated in 3xTgAD, WT and mutant Presenilin 1(PS1M146V) mice from three age groups using Laser-Doppler flowmetry. The rCBF response was reduced early in young 3xTgAD mice and almost absent in old 3xTgAD mice, up to 30%-40% reduction with altered CBF velocity and mean arterial pressure versus WT mice. The impaired rCBF response in 3xTgAD mice was associated with progression of AD pathology, characterized by deposition of intracellular and vascular amyloid-ß (Aß) oligomers, senile plaques and tau pathology. The nitric oxide synthase (NOS) inhibitor Nω-nitro-L-arginine abolished rCBF response to diazoxide suggesting NO was involved in the mediation of vasorelaxation. Levels of phosphor-eNOS (Ser1177) diminished in 3xTgAD brains with age, while the rCBF response to the NO donor sodium nitroprusside remained. In PS1M146V mice, the rCBF response to dizoxide reduced and high molecular weight Abeta oligomers were increased indicating PS1M146V contributed to the dysregulation of rCBF response in AD mice. Our study revealed an Aß oligomer-associated compromise of cerebrovascular function in rCBF response to diazoxide in AD mice with PS1M146V mutation.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Diazóxido/farmacologia , Canais KATP/metabolismo , Mutação , Presenilina-1/genética , Fatores Etários , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Vasodilatadores/farmacologia
5.
Front Neurosci ; 13: 615, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275103

RESUMO

Heart rate (HR) and HR variability (HRV), predictors of over-all organism health, are widely believed to be driven by autonomic input to the sinoatrial node (SAN), with sympathetic input increasing HR and reducing HRV. However, variability in spontaneous beating intervals in isolated SAN tissue and single SAN cells, devoid of autonomic neural input, suggests that clocks intrinsic to SAN cells may also contribute to HR and HRV in vivo. We assessed contributions of both intrinsic and autonomic neuronal input mechanisms of SAN cell function on HR and HRV via in vivo, telemetric EKG recordings. This was done in both wild type (WT) mice, and those in which adenylyl cyclase type 8 (ADCY8), a main driver of intrinsic cAMP-PKA-Ca2+ mediated pacemaker function, was overexpressed exclusively in the heart (TGAC8). We hypothesized that TGAC8 mice would: (1) manifest a more coherent pattern of HRV in vivo, i.e., a reduced HRV driven by mechanisms intrinsic to SAN cells, and less so to modulation by autonomic input and (2) utilize unique adaptations to limit sympathetic input to a heart with high levels of intrinsic cAMP-Ca2+ signaling. Increased adenylyl cyclase (AC) activity in TGAC8 SAN tissue was accompanied by a marked increase in HR and a concurrent marked reduction in HRV, both in the absence or presence of dual autonomic blockade. The marked increase in intrinsic HR and coherence of HRV in TGAC8 mice occurred in the context of: (1) reduced HR and HRV responses to ß-adrenergic receptor (ß-AR) stimulation; (2) increased transcription of genes and expression of proteins [ß-Arrestin, G Protein-Coupled Receptor Kinase 5 (GRK5) and Clathrin Adaptor Protein (Dab2)] that desensitize ß-AR signaling within SAN tissue, (3) reduced transcripts or protein levels of enzymes [dopamine beta-hydorxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT)] required for catecholamine production in intrinsic cardiac adrenergic cells, and (4) substantially reduced plasma catecholamine levels. Thus, mechanisms driven by cAMP-PKA-Ca2+ signaling intrinsic to SAN cells underlie the marked coherence of TGAC8 mice HRV. Adaptations to limit additional activation of AC signaling, via decreased neuronal sympathetic input, are utilized to ensure the hearts survival and prevent Ca2+ overload.

6.
Nat Commun ; 8(1): 1258, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097735

RESUMO

AMPK is a conserved serine/threonine kinase whose activity maintains cellular energy homeostasis. Eukaryotic AMPK exists as αßγ complexes, whose regulatory γ subunit confers energy sensor function by binding adenine nucleotides. Humans bearing activating mutations in the γ2 subunit exhibit a phenotype including unexplained slowing of heart rate (bradycardia). Here, we show that γ2 AMPK activation downregulates fundamental sinoatrial cell pacemaker mechanisms to lower heart rate, including sarcolemmal hyperpolarization-activated current (I f) and ryanodine receptor-derived diastolic local subsarcolemmal Ca2+ release. In contrast, loss of γ2 AMPK induces a reciprocal phenotype of increased heart rate, and prevents the adaptive intrinsic bradycardia of endurance training. Our results reveal that in mammals, for which heart rate is a key determinant of cardiac energy demand, AMPK functions in an organ-specific manner to maintain cardiac energy homeostasis and determines cardiac physiological adaptation to exercise by modulating intrinsic sinoatrial cell behavior.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Bradicardia/genética , Cálcio/metabolismo , Frequência Cardíaca/genética , Sarcolema/metabolismo , Nó Sinoatrial/metabolismo , Adulto , Animais , Bradicardia/metabolismo , Eletrocardiografia Ambulatorial , Exercício Físico , Coração/diagnóstico por imagem , Humanos , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Camundongos , Microscopia Eletrônica de Transmissão , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Condicionamento Físico Animal , Resistência Física , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Nó Sinoatrial/patologia
7.
Can J Physiol Pharmacol ; 95(3): 268-274, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28134561

RESUMO

A short-term exposure to resveratrol at high dosages exerts a remarkable cardioprotective effect. Whether a long-term exposure to resveratrol at low dosages that can be obtained through consumption of a resveratrol-rich diet is beneficial to heart diseases is unknown. We tested the effects of a resveratrol-enriched diet on cardiovascular remodeling of chronic heart failure (CHF) in rats resulting from permanent ligation of left coronary artery. Two weeks after surgery, rats were started on either a resveratrol-enriched (R; 5 mg/kg per day; n = 23) or normal (Control; n = 23) diet for next 10 months. Serial echocardiography in Control showed a significant decline in LV ejection fraction, increases in LV end-systolic and end-diastolic volumes, and expansion in myocardial infarct from pre-treatment values. In R, compared with Control, there were substantial improvements in those parameters. End-point LV pressure-volume loop analysis showed a significantly improved LV systolic function and AV-coupling, an index of energy transfer efficacy between the heart and aortic tree, in R compared with Control (p < 0.05). Aortic pulse wave velocity, a measure of arterial stiffness, was significantly lower in R (389 ± 15 cm/s; p < 0.05) compared with Control (489 ± 38 cm/s). These results demonstrated that long-term dietary resveratrol supplement reduces cardiovascular structural and functional deterioration in CHF.


Assuntos
Cardiotônicos/administração & dosagem , Suplementos Nutricionais , Insuficiência Cardíaca/tratamento farmacológico , Miocárdio/patologia , Estilbenos/administração & dosagem , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Doença Crônica , Colágeno/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Ecocardiografia , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Análise de Onda de Pulso , Ratos Wistar , Resveratrol , Volume Sistólico/efeitos dos fármacos , Fatores de Tempo , Rigidez Vascular/efeitos dos fármacos
8.
J Vis Exp ; (115)2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27684727

RESUMO

The rat carotid balloon injury is a well-established surgical model that has been used to study arterial remodeling and vascular cell proliferation. It is also a valuable model system to test, and to evaluate therapeutics and drugs that negate maladaptive remodeling in the vessel. The injury, or barotrauma, in the vessel lumen caused by an inflated balloon via an inserted catheter induces subsequent neointimal growth, often leading to hyperplasia or thickening of the vessel wall that narrows, or obstructs the lumen. The method described here is sufficiently sensitive, and the results can be obtained in relatively short time (2 weeks after the surgery). The efficacy of the drug or therapeutic against the induced-remodeling can be evaluated either by the post-mortem pathological and histomorphological analysis, or by ultrasound sonography in live animals. In addition, this model system has also been used to determine the therapeutic window or the time course of the administered drug. These studies can leadto the development of a better administrative strategy and a better therapeutic outcome. The procedure described here provides a tool for translational studies that bring drug and therapeutic candidates from bench research to clinical applications.


Assuntos
Lesões das Artérias Carótidas , Modelos Animais de Doenças , Remodelação Vascular , Animais , Humanos , Hiperplasia , Neointima , Ratos , Túnica Íntima
9.
Aging Cell ; 15(4): 716-24, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27168363

RESUMO

We aimed to determine how age-associated changes in mechanisms extrinsic and intrinsic to pacemaker cells relate to basal beating interval variability (BIV) reduction in vivo. Beating intervals (BIs) were measured in aged (23-25 months) and adult (3-4 months) C57BL/6 male mice (i) via ECG in vivo during light anesthesia in the basal state, or in the presence of 0.5 mg mL(-1) atropine + 1 mg mL(-1) propranolol (in vivo intrinsic conditions), and (ii) via a surface electrogram, in intact isolated pacemaker tissue. BIV was quantified in both time and frequency domains using linear and nonlinear indices. Although the average basal BI did not significantly change with age under intrinsic conditions in vivo and in the intact isolated pacemaker tissue, the average BI was prolonged in advanced age. In vivo basal BIV indices were found to be reduced with age, but this reduction diminished in the intrinsic state. However, in pacemaker tissue BIV indices increased in advanced age vs. adults. In the isolated pacemaker tissue, the sensitivity of the average BI and BIV in response to autonomic receptor stimulation or activation of mechanisms intrinsic to pacemaker cells by broad-spectrum phosphodiesterase inhibition declined in advanced age. Thus, changes in mechanisms intrinsic to pacemaker cells increase the average BIs and BIV in the mice of advanced age. Autonomic neural input to pacemaker tissue compensates for failure of molecular intrinsic mechanisms to preserve average BI. But this compensation reduces the BIV due to both the imbalance of autonomic neural input to the pacemaker cells and altered pacemaker cell responses to neural input.


Assuntos
Envelhecimento/fisiologia , Sistema Nervoso Autônomo/fisiologia , Frequência Cardíaca/fisiologia , Neurônios/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Carbacol/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Isoproterenol/farmacologia , Longevidade/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Marca-Passo Artificial , Inibidores de Fosfodiesterase/farmacologia , Receptores Adrenérgicos beta/metabolismo , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/fisiologia
10.
Curr Ther Res Clin Exp ; 76: 110-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25408789

RESUMO

OBJECTIVE: We aimed to assess the therapeutic efficacy of differentially modified soluble receptor for advanced glycation end products (sRAGE) in vivo using vessel ultrasound sonography and to compare the sonography data with those from postmortem histomorphologic analyses to have a practical reference for future clinical applications. METHODS: Vessel ultrasound sonography was performed in a sRAGE-treated rat carotid artery balloon injury model at different time points after the surgery, and therapeutic efficacy of different doses of sRAGE produced in Chinese hamster ovary cells and with different N-glycoform modifications were assessed. RESULTS: Vessel ultrasound sonography found that sRAGE produced in Chinese hamster ovary cells with complex N-glycoform modifications is highly effective, and is consistent with our recent findings in the same model assessed with histology. We also found that sonography is less sensitive than histology when a higher dose of sRAGE is administered. CONCLUSIONS: Sonograph results are consistent with those obtained from histology; that is, sRAGE produced in Chinese hamster ovary cells has significantly higher efficacy than insect cell-originated sRAGE cells.

11.
Heart Rhythm ; 11(7): 1210-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24713624

RESUMO

BACKGROUND: A reduction of complexity of heart beating interval variability that is associated with an increased morbidity and mortality in cardiovascular disease states is thought to derive from the balance of sympathetic and parasympathetic neural impulses to the heart. However, rhythmic clocklike behavior intrinsic to pacemaker cells in the sinoatrial node (SAN) drives their beating, even in the absence of autonomic neural input. OBJECTIVE: To test how this rhythmic clocklike behavior intrinsic to pacemaker cells interacts with autonomic impulses to the heart beating interval variability in vivo. METHODS: We analyzed beating interval variability in time and frequency domains and by fractal and entropy analyses: (1) in vivo, when the brain input to the SAN is intact; (2) during autonomic denervation in vivo; (3) in isolated SAN tissue (ie, in which the autonomic neural input is completely absent); (4) in single pacemaker cells isolated from the SAN; and (5) after autonomic receptor stimulation of these cells. RESULTS: Spontaneous beating intervals of pacemaker cells residing in the isolated SAN tissue exhibit fractal-like behavior and have lower approximate entropy compared with those in the intact heart. Isolation of pacemaker cells from SAN tissue, however, leads to a loss in the beating interval order and fractal-like behavior. ß-Adrenergic receptor stimulation of isolated pacemaker cells increases intrinsic clock synchronization, decreases their action potential period, and increases system complexity. CONCLUSIONS: Both the average beating interval in vivo and beating interval complexity are conferred by the combined effects of clock periodicity intrinsic to pacemaker cells and their response to autonomic neural input.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Relógios Biológicos/fisiologia , Frequência Cardíaca/fisiologia , Miócitos Cardíacos/fisiologia , Nó Sinoatrial/fisiologia , Potenciais de Ação , Animais , Coelhos
12.
J Mol Med (Berl) ; 91(12): 1369-81, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24132651

RESUMO

UNLABELLED: Signaling of the receptor for advanced glycation end products (RAGE) has been implicated in the development of injury-elicited vascular complications. Soluble RAGE (sRAGE) acts as a decoy of RAGE and has been used to treat pathological vascular conditions in animal models. However, previous studies used a high dose of sRAGE produced in insect Sf9 cells (sRAGE(Sf9))and multiple injections to achieve the therapeutic outcome. Here, we explore whether modulation of sRAGE N-glycoform impacts its bioactivity and augments its therapeutic efficacy. We first profiled carbohydrate components of sRAGE produced in Chinese hamster Ovary cells (sRAGE(CHO)) to show that a majority of its N-glycans belong to sialylated complex types that are not shared by sRAGE(Sf9). In cell-based NF-κB activation and vascular smooth muscle cell (VSMC) migration assays, sRAGE(CHO) exhibited a significantly higher bioactivity relative to sRAGE(Sf9) to inhibit RAGE alarmin ligand-induced NF-κB activation and VSMC migration. We next studied whether this N-glycoform-associated bioactivity of sRAGE(CHO) is translated to higher in vivo therapeutic efficacy in a rat carotid artery balloon injury model. Consistent with the observed higher bioactivity in cell assays, sRAGE(CHO) significantly reduced injury-induced neointimal growth and the expression of inflammatory markers in injured vasculature. Specifically, a single dose of 3 ng/g of sRAGE(CHO) reduced neointimal hyperplasia by over 70%, whereas the same dose of sRAGE(Sf9) showed no effect. The administered sRAGE(CHO) is rapidly and specifically recruited to the injured arterial locus, suggesting that early intervention of arterial injury with sRAGE(CHO) may offset an inflammatory circuit and reduce the ensuing tissue remodeling. Our findings showed that the N-glycoform of sRAGE is the key determinant underlying its bioactivity and thus is an important glycobioengineering target to develop a highly potent therapeutic sRAGE for future clinical applications. KEY MESSAGE: The specific N-glycoform modification is the key underlying sRAGE bioactivity Markedly reduced sRAGE dose to attenuate neointimal hyperplasia and inflammation Provide a molecular target for glycobioengineering of sRAGE as a therapeutic protein Blocking RAGE alarmin ligands during acute injury phase offsets neointimal growth.


Assuntos
Artrite/metabolismo , Artrite/patologia , Neointima/metabolismo , Receptores Imunológicos/metabolismo , Animais , Artrite/tratamento farmacológico , Biomarcadores/metabolismo , Células CHO , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Movimento Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Glicosilação , Humanos , Ligantes , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , NF-kappa B/metabolismo , Neointima/tratamento farmacológico , Ratos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Células Sf9
13.
J Pharmacol Exp Ther ; 345(3): 446-56, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584743

RESUMO

The cardioprotective properties of erythropoietin (EPO) in preclinical studies are well documented, but erythropoietic and prothrombotic properties of EPO preclude its use in chronic heart failure (CHF). We tested the effect of long-term treatment with a small peptide sequence within the EPO molecule, helix B surface peptide (HBSP), that possesses tissue-protective, but not erythropoietic properties of EPO, on mortality and cardiac remodeling in postmyocardial infarction-dilated cardiomyopathy in rats. Starting 2 weeks after permanent left coronary artery ligation, rats received i.p. injections of HBSP (60 µg/kg) or saline two times per week for 10 months. Treatment did not elicit an immune response, and did not affect the hematocrit. Compared with untreated rats, HBSP treatment reduced mortality by 50% (P < 0.05). Repeated echocardiography demonstrated remarkable attenuation of left ventricular dilatation (end-diastolic volume: 41 versus 86%; end-systolic volume: 44 versus 135%; P < 0.05), left ventricle functional deterioration (ejection fraction: -4 versus -63%; P < 0.05), and myocardial infarction (MI) expansion (3 versus 38%; P < 0.05). A hemodynamic assessment at study termination demonstrated normal preload independent stroke work (63 ± 5 versus 40 ± 4; P < 0.05) and arterioventricular coupling (1.2 ± 0.2 versus 2.7 ± 0.7; P < 0.05). Histologic analysis revealed reduced apoptosis (P < 0.05) and fibrosis (P < 0.05), increased cardiomyocyte density (P < 0.05), and increased number of cardiomyocytes in myocardium among HBSP-treated rats. The results indicate that HBSP effectively reduces mortality, ameliorates the MI expansion and CHF progression, and preserves systolic reserve in the rat post-MI model. There is also a possibility that HBSP promoted the increase of the myocytes number in the myocardial wall remote from the infarct. Thus, HBSP peptide merits consideration for clinical testing.


Assuntos
Cardiomiopatia Dilatada/prevenção & controle , Eritropoetina/farmacologia , Infarto do Miocárdio/complicações , Peptídeos/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/patologia , Tamanho Celular/efeitos dos fármacos , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Ecocardiografia , Eritropoetina/química , Hematócrito , Hemodinâmica/efeitos dos fármacos , Estimativa de Kaplan-Meier , Masculino , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Peptídeos/química , Ratos , Ratos Wistar , Análise de Sobrevida , Remodelação Ventricular/efeitos dos fármacos
14.
Biol Open ; 1(10): 1049-53, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213383

RESUMO

Activation of nitric oxide (NO) signaling is considered, at list partially, a mechanistic basis for EPO-induced cardioprotection. Surprisingly, hemodynamic response subsequent to NO activation after EPO administration has never been reported. The objectives of this study were to evaluate the acute hemodynamic and cardiovascular responses to EPO administration, to confirm their NO genesis, and to test the hypothesis that EPO-induced cardioprotection is mediated through cardiovascular changes related to NO activation. In Experiment 1, after 3000 U/kg of rhEPO was administered intravenously to Wistar rats, arterial blood pressure, monitored via indwelling catheter, progressively declined almost immediately until it leveled off 90 minutes after injection at 20% below control level. In Experiment 2 the 25% reduction of mean blood pressure, compared to control group, was observed 2 hours after intravenous injection of either 3000 or 150 U/kg of rhEPO. Detailed pressure-volume loop analyses of cardiac performance (Experiment 3) 2 hours after intravenous injection of human or rat recombinant EPO (3000 U/kg) revealed a significant reduction of systolic function (PRSW was 33% less than control). Reduction of arterial blood pressure and systolic cardiac function in response to rhEPO were blocked in rats pretreated with a non-selective inhibitor of nitric oxide synthase (L-NAME). In Experiment 4, 24 hours after a permanent ligation of a coronary artery, myocardial infarction (MI) measured 26±3.5% of left ventricle in untreated rats. MI in rats treated with 3000 U/kg of rhEPO immediately after coronary ligation was 56% smaller. Pretreatment with L-NAME did not attenuate the beneficial effect of rhEPO on MI size, while MI size in rats treated with L-NAME alone did not differ from control. Therefore, a single injection of rhEPO resulted in a significant, NO-mediated reduction of systemic blood pressure and corresponding reduction of cardiac systolic function. However, EPO-induced protection of myocardium from ischemic damage is not associated with NO activation or NO-mediated hemodynamic responses.

15.
PLoS One ; 7(4): e34819, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22529941

RESUMO

BACKGROUND: To test a hypothesis that in negative clinical trials of erythropoietin in patients with acute myocardial infarction (MI) the erythropoietin (rhEPO) could be administered outside narrow therapeutic window. Despite overwhelming evidence of cardioprotective properties of rhEPO in animal studies, the outcomes of recently concluded phase II clinical trials have failed to demonstrate the efficacy of rhEPO in patients with acute MI. However, the time between symptoms onset and rhEPO administration in negative clinical trials was much longer that in successful animal experiments. METHODOLOGY/PRINCIPAL FINDINGS: MI was induced in rats either by a permanent ligation of a descending coronary artery or by a 2-hr occlusion followed by a reperfusion. rhEPO, 3000 IU/kg, was administered intraperitoneally at the time of reperfusion, 4 hrs after beginning of reperfusion, or 6 hrs after permanent occlusion. MI size was measured histologically 24 hrs after coronary occlusion. The area of myocardium at risk was similar among groups. The MI size in untreated rats averaged ~42% of area at risk, or ~24% of left ventricle, and was reduced by more than 50% (p<0.001) in rats treated with rhEPO at the time of reperfusion. The MI size was not affected by treatment administered 4 hrs after reperfusion or 6 hrs after permanent coronary occlusion. Therefore, our study in a rat experimental model of MI demonstrates that rhEPO administered within 2 hrs of a coronary occlusion effectively reduces MI size, but when rhEPO was administered following a delay similar to that encountered in clinical trials, it had no effect on MI size. CONCLUSIONS/SIGNIFICANCE: The clinical trials that failed to demonstrate rhEPO efficacy in patients with MI may have missed a narrow therapeutic window defined in animal experiments.


Assuntos
Eritropoetina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Animais , Ensaios Clínicos Fase II como Assunto , Eritropoetina/administração & dosagem , Humanos , Masculino , Ratos , Ratos Wistar , Fatores de Tempo , Falha de Tratamento
16.
Cell Metab ; 15(3): 361-71, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22405071

RESUMO

The citric acid cycle (CAC) metabolite fumarate has been proposed to be cardioprotective; however, its mechanisms of action remain to be determined. To augment cardiac fumarate levels and to assess fumarate's cardioprotective properties, we generated fumarate hydratase (Fh1) cardiac knockout (KO) mice. These fumarate-replete hearts were robustly protected from ischemia-reperfusion injury (I/R). To compensate for the loss of Fh1 activity, KO hearts maintain ATP levels in part by channeling amino acids into the CAC. In addition, by stabilizing the transcriptional regulator Nrf2, Fh1 KO hearts upregulate protective antioxidant response element genes. Supporting the importance of the latter mechanism, clinically relevant doses of dimethylfumarate upregulated Nrf2 and its target genes, hence protecting control hearts, but failed to similarly protect Nrf2-KO hearts in an in vivo model of myocardial infarction. We propose that clinically established fumarate derivatives activate the Nrf2 pathway and are readily testable cytoprotective agents.


Assuntos
Antioxidantes/metabolismo , Fumaratos/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Fumarato de Dimetilo , Fumarato Hidratase/deficiência , Fumarato Hidratase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/prevenção & controle , Fator 2 Relacionado a NF-E2/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
Cardiovasc Drugs Ther ; 26(2): 101-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22328006

RESUMO

PURPOSE: A salutary effect of ß(2) adrenergic receptor (AR) agonist, fenoterol has been demonstrated in a rat model of post-myocardial infarction (MI) dilated cardiomyopathy (DCM). Recent reports on single cardiomyocyte experiments suggested that out of two enantiomers, RR and SS, that constitute a racemic mixture of fenoterol, only RR-enantiomer is an active component that might be a promising new drug for treatment of chronic heart failure. The objective of this study was to compare the efficacy of the RR enantiomer of fenoterol with efficacy of racemic fenoterol, and SS, an inactive enantiomer, in whole animal experimental models of DCM. METHODS: Two weeks after induction of MI by permanent ligation of the anterior descending coronary artery early cardiac remodeling and MI size were assessed via echocardiography and rats were divided into treatment groups. Treatment (placebo, racemic fenoterol, RR- or SS-enantiomers of fenoterol) continued for 6 months while progression of DCM was followed by serial echocardiography. RESULTS: Compared with untreated rats, rats treated with racemic fenoterol demonstrated previously described attenuation of LV remodeling, functional decline and the arrest of the MI expansion during the first 2 months of treatment. On the contrary, the treatment with either RR-, or with SS-enantiomers of fenoterol was completely ineffective. CONCLUSION: The conclusion drawn on the basis of previous experiments with single cardiomyocytes that RR-enantiomer of fenoterol represents an active component of racemic fenoterol and can be further investigated as a new drug for treatment of chronic heart failure was not confirmed in the whole animal model of DCM.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Cardiomiopatia Dilatada/tratamento farmacológico , Fenoterol/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 2/química , Animais , Cardiomiopatia Dilatada/fisiopatologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Ecocardiografia/métodos , Fenoterol/química , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Masculino , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Ratos , Ratos Wistar , Estereoisomerismo , Remodelação Ventricular/fisiologia
18.
J Mol Cell Cardiol ; 51(2): 263-71, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21586294

RESUMO

Multiple health benefits of calorie restriction (CR) and alternate day fasting (ADF) regimens are widely recognized. Experimental data concerning the effects of calorie restriction on cardiac health are more controversial, ranging from evidence that ADF protects heart from ischemic damage but results in developing of diastolic dysfunction, to reports that CR ameliorates the age-associated diastolic dysfunction. Here we investigated the effects of chronic CR on morphology and function of the cardiovascular system of aged rats and cardioprotective effect of CR against ischemic damage in the experimental rat model of MI. Cardiovascular fitness of 24-month old Fisher 344 rats maintained through life on ad libitum (AL) or CR diets was extensively evaluated via echocardiography, dobutamine stress test, pressure-volume loop analyses, pulse wave velocity measurements, and histology. Groups of 2-month old AL and 29-month old CR rats were studied for comparison. Myocardial infarction (MI) was induced by a permanent ligation of the anterior descending coronary artery in 5-month old rats maintained for 3 months on CR or AL. MI size was evaluated histologically 24 hrs following coronary ligation. Cardiac remodeling was followed-up via echocardiography. Age-associated changes in 24-month old rats consisted of 33% increase of fibrosis in the myocardium and more than 2 fold increase of the collagen in the tunica media of the aorta. There was a significant decrease in the density and total number of cardiomyocytes, while their size was increased. These morphological changes were manifested in a decline of systolic and diastolic cardiac function, increase of left ventricular and aortic stiffness, and arterio-ventricular uncoupling. Tachycardic response to dobutamine challenge was absent in the old rats. Compared to AL rats, 24-month old CR rats had reduced levels of cardiac and aortic fibrosis, increased density of cardiomyocytes that were smaller in size, attenuated diastolic dysfunction, normal systolic function and arterio-ventricular coupling. Tachycardic response to dobutamine was also intact in CR 24-month old rats and aortic stiffness was reduced. Adjustment for body weight differences through ratiometric or allometric scaling did not affect the overall pattern of differences between AL and CR rats. Attenuation of morphological and functional age-associated changes in 24-month old CR rats either was not observed at all or was smaller in 29-month old CR rats. Size of MI induced by a permanent coronary ligation as well as post-MI cardiac remodeling and function were similar in CR and AL rats. CR does not increase tolerance of myocardium to ischemic damage, but attenuates the age-associated changes in the heart and major vessels. The attenuation of age-associated changes by CR cannot be explained by the effect of lower body weight but are attributable to more intimate cellular mechanisms of CR itself. Attenuation of age-associated changes by CR waned with advancing age, and is consistent with the idea that CR postponed senescence.


Assuntos
Restrição Calórica , Doenças Cardiovasculares/prevenção & controle , Fatores Etários , Animais , Aorta Torácica/patologia , Peso Corporal , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/patologia , Ecocardiografia , Ecocardiografia sob Estresse , Coração/fisiopatologia , Hemodinâmica/fisiologia , Estimativa de Kaplan-Meier , Longevidade , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Ratos , Ratos Endogâmicos F344
19.
J Mol Cell Cardiol ; 51(4): 529-33, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20888833

RESUMO

The main clinical manifestations of advanced chronic heart failure (CHF), e.g. in dilated cardiomyopathy (DCM), are reduced systolic and diastolic functions, increased arterial elastance and arterio-ventricular uncoupling, accompanied and exacerbated by an excessive sympathetic activation and extensive abnormalities in the ßAR signaling. Loss of cardiomyocytes due to apoptosis is one mechanism that undoubtedly contributes to cardiac remodeling and functional deterioration associated with dilated cardiomyopathy (DCM). Research during the last decade on the single cardiomyocyte level strongly suggested that selective stimulation of ß(1) AR activates the proapoptotic signaling pathways, while selective stimulation of ß(2) AR is antiapoptotic, but its precise mechanisms remain to be elucidated. Extensive research in the rat model of DCM following induction of myocardial infarction (MI) showed that prolonged treatment with of ß(2) AR agonist, fenoterol, in combination with a ß(1) AR blocker, metoprolol, is more effective than ß(1) AR blocker alone and as effective as ß(1) AR blocker with ACE inhibitor with respect to survival and cardiac remodeling. This combined regimen of ß(2) AR agonists and a ß(1) AR blocker might be considered for clinical testing as alternative or adjunct therapy to currently acceptable CHF arsenal. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Cardiomiopatia Dilatada/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Receptores Adrenérgicos beta 2/fisiologia , Animais , Apoptose/efeitos dos fármacos , Carbazóis/uso terapêutico , Cardiomiopatia Dilatada/patologia , Carvedilol , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Insuficiência Cardíaca/patologia , Humanos , Terapia de Alvo Molecular , Propanolaminas/uso terapêutico , Pesquisa Translacional Biomédica
20.
Mol Med ; 17(3-4): 194-200, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21170473

RESUMO

Strong cardioprotective properties of erythropoietin (EPO) reported over the last 10 years have been difficult to translate to clinical applications for ischemic cardioprotection owing to undesirable parallel activation of erythropoiesis and thrombogenesis. A pyroglutamate helix B surface peptide (pHBP), recently engineered to include only a part of the EPO molecule that does not bind to EPO receptor and thus, is not erythropoietic, retains tissue protective properties of EPO. Here we compared the ability of pHBP and EPO to protect cardiac myocytes from oxidative stress in vitro and cardiac tissue from ischemic damage in vivo. HBP, similar to EPO, increased the reactive oxygen species (ROS) threshold for induction of the mitochondrial permeability transition by 40%. In an experimental model of myocardial infarction induced by permanent ligation of a coronary artery in rats, a single bolus injection of 60 µg/kg of pHBP immediately after coronary ligation, similar to EPO, reduced apoptosis in the myocardial area at risk, examined 24 h later, by 80% and inflammation by 34%. Myocardial infarction (MI) measured 24 h after coronary ligation was similarly reduced by 50% in both pHBP- and EPO-treated rats. Two wks after surgery, left ventricular remodeling (ventricular dilation) and functional decline (fall in ejection fraction) assessed by echocardiography were significantly and similarly attenuated in pHBP- and EPO-treated rats, and MI size was reduced by 25%. The effect was retained during the 6-wk follow-up. A single bolus injection of pHBP immediately after coronary ligation was effective in reduction of MI size in a dose as low as 1 µg/kg, but was ineffective at a 60 µg/kg dose if administered 24 h after MI induction. We conclude that pHBP is equally cardioprotective with EPO and deserves further consideration as a safer alternative to rhEPO in the search for therapeutic options to reduce myocardial damage following blockade of the coronary circulation.


Assuntos
Cardiotônicos/farmacologia , Eritropoetina/farmacologia , Infarto do Miocárdio/prevenção & controle , Peptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Células Cultivadas , Relação Dose-Resposta a Droga , Ecocardiografia , Eritropoetina/química , Coração/efeitos dos fármacos , Coração/fisiopatologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Confocal , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/complicações , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos/química , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA