Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(27): 34892-34901, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38949109

RESUMO

There is a growing demand for research and development of advanced energy storage devices with high energy density utilizing earth-abundant metal anodes such as sodium metal. Tellurium, a member of the chalcogen group, stands out as a promising cathode material due to its remarkable volumetric capacity, comparable to sulfur, and significantly high electrical conductivity. However, critical issues arise from soluble sodium polytellurides, leading to the shuttle effect. This phenomenon can result in the loss of active materials, self-discharge, and anode instability. Here, we introduce polypyrrole-coated tellurium nanotubes as the cathode materials, where polypyrrole plays a crucial role in preventing the dissolution of polytellurides, as confirmed through operando optical microscopy. The polypyrrole-coated tellurium nanotubes exhibited an outstanding rate performance and long cycle stability in sodium-tellurium batteries. These research findings are anticipated to bolster the viability of polypyrrole-coated tellurium nanotubes as promising cathode materials, making a substantial contribution to the commercialization of sodium-ion battery technology.

2.
Chem Asian J ; 19(4): e202301016, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38146665

RESUMO

The endeavor to develop high-performance electrochemical energy applications has underscored the growing importance of comprehending the intricate dynamics within an electrode's structure and their influence on overall performance. This review investigates the complexities of electrode-ionomer interactions, which play a critical role in optimizing electrochemical reactions. Our examination encompasses both microscopic and meso/macro scale functions of ionomers at the electrode-ionomer interface, providing a thorough analysis of how these interactions can either enhance or impede surface reactions. Furthermore, this review explores the broader-scale implications of ionomer distribution within porous electrodes, taking into account factors like ionomer types, electrode ink formulation, and carbon support interactions. We also present and evaluate state-of-the-art techniques for investigating ionomer distribution, including electrochemical methods, imaging, modeling, and analytical techniques. Finally, the performance implications of these phenomena are discussed in the context of energy conversion devices. Through this comprehensive exploration of intricate interactions, this review contributes to the ongoing advancements in the field of energy research, ultimately facilitating the design and development of more efficient and sustainable energy devices.

3.
Chem Rev ; 121(24): 15075-15140, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34677946

RESUMO

A substantial amount of research effort has been directed toward the development of Pt-based catalysts with higher performance and durability than conventional polycrystalline Pt nanoparticles to achieve high-power and innovative energy conversion systems. Currently, attention has been paid toward expanding the electrochemically active surface area (ECSA) of catalysts and increase their intrinsic activity in the oxygen reduction reaction (ORR). However, despite innumerable efforts having been carried out to explore this possibility, most of these achievements have focused on the rotating disk electrode (RDE) in half-cells, and relatively few results have been adaptable to membrane electrode assemblies (MEAs) in full-cells, which is the actual operating condition of fuel cells. Thus, it is uncertain whether these advanced catalysts can be used as a substitute in practical fuel cell applications, and an improvement in the catalytic performance in real-life fuel cells is still necessary. Therefore, from a more practical and industrial point of view, the goal of this review is to compare the ORR catalyst performance and durability in half- and full-cells, providing a differentiated approach to the durability concerns in half- and full-cells, and share new perspectives for strategic designs used to induce additional performance in full-cell devices.


Assuntos
Platina , Polímeros , Catálise , Eletrodos , Eletrólitos/química , Platina/química , Polímeros/química
4.
Adv Sci (Weinh) ; 7(16): 2001263, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32832368

RESUMO

A breakthrough utilizing an anionic redox reaction (O2-/On-) for charge compensation has led to the development of high-energy cathode materials in sodium-ion batteries. However, its reaction results in a large voltage hysteresis due to the structural degradation arising from an oxygen loss. Herein, an interesting P2-type Mn-based compound exhibits a distinct two-phase behavior preserving a high-potential anionic redox (≈4.2 V vs Na+/Na) even during the subsequent cycling. Through a systematic series of experimental characterizations and theoretical calculations, the anionic redox reaction originating from O 2p-electron and the reversible unmixing of Na-rich and Na-poor phases are confirmed in detail. In light of the combined study, a critical role of the anion-redox-induced two-phase reaction in the positive-negative point of view is demonstrated, suggesting a rational design principle considering the phase separation and lattice mismatch. Furthermore, these results provide an exciting approach for utilizing the high-voltage feature in Mn-based layered cathode materials that are charge-compensated by an anionic redox reaction.

5.
J Am Chem Soc ; 142(31): 13406-13414, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32608979

RESUMO

Integrated with heat-generating devices, a Li-ion battery (LIB) often operates at 20-40 °C higher than the ordinary working temperature. Although macroscopic investigation of the thermal contribution has shown a significant reduction in the LIB performance, the molecular level structural and chemical origin of battery aging in a mild thermal environment has not been elucidated. On the basis of the combined experiments of the electrochemical measurements, Cs-corrected electron microscopy, and in situ analyses, we herein provide operando structural and chemical insights on how a mild thermal environment affects the overall battery performance using anatase TiO2 as a model intercalation compound. Interestingly, a mild thermal condition induces excess lithium intercalation even at near-ambient temperature (45 °C), which does not occur at the ordinary working temperature. The anomalous intercalation enables excess lithium storage in the first few cycles but exerts severe intracrystal stress, consequently cracking the crystal that leads to battery aging. Importantly, this mild thermal effect is accumulated upon cycling, resulting in irreversible capacity loss even after the thermal condition is removed. Battery aging at a high working temperature is universal in nearly all intercalation compounds, and therefore, it is significant to understand how the thermal condition contributes to battery aging for designing intercalation compounds for advanced battery electrode materials.

6.
Nanoscale ; 12(28): 15214-15221, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32639495

RESUMO

Micro/meso-porous Bi@C nanoplates are synthesized by pyrolyzing Bi-based metal-organic frameworks (MOFs) prepared by a microwave-assisted hydrothermal method to overcome huge volume expansion and pulverization of anode materials during battery operation. The Bi@C nanoplates are composed of ∼10-50 nm Bi nanoparticles in an amorphous carbon shell. The material shows very high capacity (556 mA h g-1) after 100 cycles at 100 mA g-1 and good cycling performance. Moreover, the Bi@C nanoplates perform well at high current densities and have excellent cyclic stability; their capacity is 308 mA h g-1 after 50 cycles and 200 mA h g-1 after 1000 cycles at 3000 mA g-1. The outstanding performance of this anode is due to the nanosized Bi and amorphous carbon shell. The nanosized Bi reduces the diffusion length of Li ions, while the amorphous carbon shell improves the electrical conductivity of the anode and also restrains the pulverization and aggregation of the metal during cycling. The proposed hierarchical micro/meso-porous materials derived from MOFs are a new type of nanostructures that can aid the development of novel Bi-based anodes for LIBs.

7.
Sci Adv ; 6(5): eaaw0870, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32064327

RESUMO

In polymer electrolyte fuel cells (PEFCs), protons from the anode are transferred to the cathode through the ionomer membrane. By impregnating the ionomer into the electrodes, proton pathways are extended and high proton transfer efficiency can be achieved. Because the impregnated ionomer mechanically binds the catalysts within the electrode, the ionomer is also called a binder. To yield good electrochemical performance, the binder should be homogeneously dispersed in the electrode and maintain stable interfaces with other catalyst components and the membrane. However, conventional binder materials do not have good dispersion properties. In this study, a facile approach based on using a supercritical fluid is introduced to prepare a homogeneous nanoscale dispersion of the binder material in aqueous alcohol. The prepared binder exhibited high dispersion characteristics, crystallinity, and proton conductivity. High performance and durability were confirmed when the binder material was applied to a PEFC cathode electrode.

8.
Small ; 14(36): e1802191, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30095220

RESUMO

Transition metal dichalcogenides, especially MoS2 , are considered as promising electrocatalysts for hydrogen evolution reaction (HER). Since the physicochemical properties of MoS2 and electrode morphology are highly sensitive factor for HER performance, designed synthesis is highly pursued. Here, an in situ method to prepare a 3D carbon/MoS2 hybrid catalyst, motivated by the graphene ribbon synthesis process, is reported. By rational design strategies, the hybrid electrocatalysts with cross-connected porous structure are obtained, and they show a high HER activity even comparable to the state-of-the-art MoS2 catalyst without appreciable activity loss in long-term operations. Based on various physicochemical techniques, it is demonstrated that the synthetic procedure can effectively guide the formation of active site and 3D structure with a distinctive feature; increased exposure of active sites by decreased domain size and intrinsically high activity through controlling the number of stacking layers. Moreover, the importance of structural properties of the MoS2 -based catalysts is verified by controlled experiments, validating the effectiveness of the designed synthesis approach.

9.
Sci Rep ; 8(1): 1257, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352249

RESUMO

Guided cracks were successfully generated in an electrode using the concentrated surface stress of a prism-patterned Nafion membrane. An electrode with guided cracks was formed by stretching the catalyst-coated Nafion membrane. The morphological features of the stretched membrane electrode assembly (MEA) were investigated with respect to variation in the prism pattern dimension (prism pitches of 20 µm and 50 µm) and applied strain (S ≈ 0.5 and 1.0). The behaviour of water on the surface of the cracked electrode was examined using environmental scanning electron microscopy. Guided cracks in the electrode layer were shown to be efficient water reservoirs and liquid water passages. The MEAs with and without guided cracks were incorporated into fuel cells, and electrochemical measurements were conducted. As expected, all MEAs with guided cracks exhibited better performance than conventional MEAs, mainly because of the improved water transport.

10.
RSC Adv ; 8(56): 32231-32240, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35547481

RESUMO

Biomass-derived carbon, as a low-cost material source, is an attractive choice to prepare carbon materials, thus providing an alternative to by-product and waste management. Herein, we report the preparation of carbon from hemp stem as a biomass precursor through a simple, low-cost, and environment-friendly method with using steam as the activating agent. The hemp-derived carbon with a hierarchically porous structure and a partial graphitization in amorphous domains was developed, and for the first time, it was applied as an anode material for lithium-ion battery. Natural hemp itself delivers a reversible capacity of 190 mA h g-1 at a rate of 300 mA g-1 after 100 cycles. Ball-milling of hemp-derived carbon is further designed to control the physical properties, and consequently, the capacity of milled hemp increases to 300 mA h g-1 along with excellent rate capability of 210 mA h g-1 even at 1.5 A g-1. The milled hemp with increased graphitization and well-developed meso-porosity is advantageous for lithium diffusion, thus enhancing electrochemical performance via both diffusion-controlled intercalation/deintercalation and surface-limited adsorption/desorption. This study not only demonstrates the application of hemp-derived carbon in energy storage devices, but also guides a desirable structural design for lithium storage and transport.

11.
ACS Appl Mater Interfaces ; 9(47): 41303-41313, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29094595

RESUMO

Nitrogen-doped porous carbon materials have been highlighted as promising alternatives to high-cost platinum in various electrochemical energy applications. However, protocols to generate effective pore structure are still challenging, which hampers mass production and utilization of carbon materials. Here, we suggest a facile and effective method for hierarchical porous carbon by a single-step carbonization of coffee waste (CW) with ZnCl2. The CW, which is one of the most earth-abundant organic waste, can be successfully converted to nitrogen-doped porous carbon. It shows outstanding oxygen reduction activity and durability comparable to the state-of-the-art platinum, and the half-wave potential is also comparable to the best metal-free electrocatalysts in alkaline media. Finally, we apply it to counter electrode of dye-sensitized solar cell, whose photovoltaic efficiency surpasses the one made with conventional platinum electrode. We demonstrate the feasibility of our strategies for highly efficient, cheap, and environment-friendly electrocatalyst to replace platinum in various electrochemical energy applications.

12.
Sci Rep ; 6: 32433, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27573528

RESUMO

Lithium-sulphur batteries are under intense research due to the high specific capacity and low cost. However, several problems limit their commercialization. One of them is the insulating nature of sulphur, which necessitates a large amount of conductive agent and binder in the cathode, reducing the effective sulphur load as well as the energy density. Here we introduce a redox mediator, cobaltocene, which acts as an electron transfer agent between the conductive surface and the polysulphides in the electrolyte. We confirmed that cobaltocene could effectively convert polysulphides to Li2S using scanning electron microscope, X-ray absorption near-edge structure and in-situ X-ray diffraction studies. This redox mediator enabled excellent electrochemical performance in a cathode with ultra-high sulphur content (80 wt%). It delivered 400 mAh g(-1)cathode capacity after 50 cycles, which is equivalent to 800 mAh g(-1)S in a typical cathode with 50 wt% sulphur. Furthermore, the volumetric capacity was also dramatically improved.

13.
Sci Rep ; 6: 26503, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27210793

RESUMO

We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA