Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(24): 31384-31391, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38855921

RESUMO

Soft electronic materials hold great promise for advancing flexible functional devices. Among the various soft materials available, hydrogels are particularly attractive for soft electronic device development due to their inherent properties, including transparency, shape adaptability through swelling/deswelling, and self-healing capabilities. Transparent hydrogels contribute to the creation of advanced smart devices such as sensors, smart windows, and anticounterfeiting technologies. Poly(vinyl alcohol) hydrogels are used as a platform for creating electrofluorochromic (EFC) devices in combination with oligothiophene-conjugated benzothiazole derivatives (OCBs) as fluorescent emitters. OCBs demonstrated excited-state intramolecular proton transfer (ESIPT) behavior with a large Stokes shift and emission changes responsive to solvent polarity and pH stimuli. Even in the solid state, OCBs exhibited strong fluorescence emission across a wide range of colors from blue to red, making them exceptionally well-suited for EFC device development. Their quantum yields in the powder state were obtained between 2.3% and 19.9%. Through the incorporation of OCBs into a PVA hydrogel (OCB@PVA), we achieved the successful fabrication of flexible EFC devices, including electronic paper and smart panels. When electric potentials (-2.4 and +2.4 V) were applied in OCB@PVA, fluorescence color changes were observed by an electrochemically induced pH change owing to electrohydrolysis of water. These devices demonstrated the potential of OCB@PVA hydrogels in the realm of flexible electronics. They could be used to create innovative and versatile devices with stimuli-responsive fluorescence properties.

2.
ChemSusChem ; : e202400593, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38676292

RESUMO

Recent advances in electrosynthesis of nanomaterials expanded structural and compositional variations accessible by the electrochemical method; however, reliably synthesizable morphological variety fall shy of that available by conventional solvothermal synthesis. In this communication, electrochemical preparation of surfactant-free hollow nanoparticles is demonstrated. By anodic conversion of core-shell precursors with metastable cores, hollowed nickel nanoparticles with uniform dimensions were synthesized and characterized. Implementation of TEM grids as the working electrodes, identical location tracking of the morphological evolution of single particles to anodic stimulus has been demonstrated. The synthesized nanoparticles were employed as catalysts for the alkaline hydrogen evolution reaction and exhibited catalytic rates that compare favorably to the Pt/C benchmark. This marks the first pure electrochemical synthesis of hollow nanoparticles and shall contribute to the structural diversification of electrosynthesized nanomaterials.

3.
Chemistry ; 30(27): e202400191, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38498874

RESUMO

Controlling the formation of photoexcited triplet states is critical for many (photo)chemical and physical applications. Here, we demonstrate that a permanent out-of-plane distortion of the benzothioxanthene imide (BTI) dye promotes intersystem crossing by increasing spin-orbit coupling. This manipulation was achieved through a subtle chemical modification, specifically the bay-area methylation. Consequently, this simple yet efficient approach expands the catalog of known molecular engineering strategies for synthesizing heavy atom-free, dual redox-active, yet still emissive and synthetically accessible photosensitizers.

4.
Small ; 20(30): e2400038, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38402430

RESUMO

Development of synthetic strategies selectively yielding single crystals is desired owing to the facet-dependent chemical reactivities. Recent advances in electrochemical materials synthesis yielded nanomaterials that are surfactant-free, however, typically in polycrystalline forms. In this work, an electrochemical synthetic strategy selectively yielding single-crystalline nanoparticles by implementation of surface-selective heating of the working electrode is developed. Single crystals of copper, silver, gold, and platinum are afforded, and the crystallinity verified by electron diffraction and chemical reactivity studies. Notably, Cu (100) surface prepared by electrochemical synthesis yielded high single product selectivity when applied to electrochemical CO2 reduction catalysis.

5.
Nat Commun ; 14(1): 6768, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880242

RESUMO

Interest in securing energy production channels from renewable sources is higher than ever due to the daily observation of the impacts of climate change. A key renewable energy harvesting strategy achieving carbon neutral cycles is artificial photosynthesis. Solar-to-fuel routes thus far relied on elaborately crafted semiconductors, undermining the cost-efficiency of the system. Furthermore, fuels produced required separation prior to utilization. As an artificial photosynthesis design, here we demonstrate the conversion of swimming green algae into photovoltaic power stations. The engineered algae exhibit bioelectrogenesis, en route to energy storage in hydrogen. Notably, fuel formation requires no additives or external bias other than CO2 and sunlight. The cellular power stations autoregulate the oxygen level during artificial photosynthesis, granting immediate utility of the photosynthetic hydrogen without separation. The fuel production scales linearly with the reactor volume, which is a necessary trait for contributing to the large-scale renewable energy portfolio.

6.
ACS Sens ; 8(4): 1750-1755, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36960938

RESUMO

Development of sensing technologies for trace vapors of nitroaromatic compounds (NACs) is highly desired due to the toxic and explosive nature of the target molecules. Here, a NAC sensor based on a membraneless ionic liquid electrochemical cell was developed and applied for room-temperature trace vapor detection. Submicrometer working electrode dimensions yielded maximized portability and cost efficiency and extremely short time scales for molecular identification. The nanoprobe exhibited detection limitscomparable to those of state-of-the-art NAC sensors. The most noteworthy feature was the fast response to trace vapors, allowing for real-time detection of NACs without sample pretreatment. The pulled capillary form factor of the developed sensor enabled its application as tip electrodes in gas-phase scanning electrochemical microscopy (SECM). With the degree of freedom in three dimensions, mapping of the differential vapor pressure of NACs was possible, leading to potential application of the probe in sniffing out the source of explosive gas dissemination.


Assuntos
Substâncias Explosivas , Temperatura , Microscopia Eletroquímica de Varredura , Gases , Eletrodos
7.
Anal Chim Acta ; 1226: 340287, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36068067

RESUMO

Development of ultramicroelectrodes and nanoelectrodes opened interesting possibilities in the investigation electron transfer phenomena, including their application as probe electrodes in scanning electrochemical microscopy (SECM). Analytical prowess of SECM was often shadowed by long operation times required for analysis of a wide sample area. In this report, we developed a multi-channel nanoelectrode bundle for simultaneous electroanalysis of multiple orthogonal redox reactions in one bath. Four nanoelectrodes of diameters 100-400 nm were shown to be bundled in a 2 µm disk area. The nanoelectrode assembly was implemented as a tip electrode for multi-channel SECM, dramatically improving the time efficiency of SECM operations. The nanoelectrode bundle was also demonstrated as a stand-alone microprobe for electroanalytical investigations in small volumes such as ceramic confinements and biologically important compartments. The development reported in this work should benefit electrochemical analyses of various systems, especially those involving SECM and fine spatial control.


Assuntos
Microscopia Eletroquímica de Varredura , Eletroquímica , Eletrodos , Oxirredução
8.
Anal Chem ; 94(23): 8101-8104, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35532541

RESUMO

A novel membraneless oxygen sensing nanoprobe was developed based on a hanging drop ionic liquid electrochemical cell. An ultrasmall (<500 nm) working electrode and small volume electrochemical cell allowed for an impressively low detection limit of ∼13 ppm and a response time less than 100 ms, which is unusually fast for an electrochemical gas sensor. The oxygen sensor was stable for hours of operation and, owing to the membraneless design, was easily regenerable when fouled. The pulled capillary form factor of the nanoprobe was found compatible with scanning probe techniques, the demonstration of which was made by application as a tip electrode in gas phase scanning electrochemical microscopy (SECM). In the SECM experiments, the oxygen nanoprobe exhibited micrometer scale spatial resolution with ease. This unique probe design developed here may potentially be engineered into versatile sensors for various volatile molecules other than oxygen, such as those pertinent to hazard analysis and biomedical diagnosis.


Assuntos
Líquidos Iônicos , Eletrodos , Líquidos Iônicos/química , Microscopia Eletroquímica de Varredura , Oxigênio/análise
9.
Nanomaterials (Basel) ; 12(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630927

RESUMO

Understanding the long-term stability of MoS2 is important for various optoelectronic applications. Herein, we show that the long-term exposure to an oxygen atmosphere for up to a few months results in zigzag (zz)-directional line unzipping of the MoS2 basal plane. In contrast to exposure to dry or humid N2 atmospheres, dry O2 treatment promotes the initial formation of line defects, mainly along the armchair (ac) direction, and humid O2 treatment further promotes ac line unzipping near edges. Further incubation of MoS2 for a few months in an O2 atmosphere results in massive zz-directional line unzipping. The photoluminescence and the strain-doping plot based on two prominent bands in the Raman spectrum show that, in contrast to dry-N2-treated MoS2, the O2-treated MoS2 primarily exhibits hole doping, whereas humid-O2-treated MoS2 mainly exists in a neutral charge state with tension. This study provides a guideline for MoS2 preservation and a further method for generating controlled defects.

10.
Nanoscale ; 14(18): 6981-6989, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35470845

RESUMO

Single-entity analysis is an important research topic in electrochemistry. To date, electrode collisions and subsequent electrode-particle interactions have been studied for many types of nano-objects, including metals, polymers, and micelles. Here we extend this nano-object electrochemistry analysis to Pickering emulsions for the first time. The electrochemistry of Pickering emulsions is important because the internal space of a Pickering emulsion can serve as a reactor or template; this leads to myriad possible applications, all the while maintaining mechanical stability far superior to what is exhibited by conventional emulsions. This work showed that Pickering emulsions exhibit similar hydrodynamic behavior to other nano-objects, despite the complex structure involving hard nanoparticle surfactants, and the electron-transport mechanism into the internal volume of Pickering emulsions was elucidated. The Pickering emulsion electrochemistry platform developed here can be applied to electrochemical nanomaterial synthesis, surmounting the challenges faced by conventional synthetic strategies involving normal emulsions.

11.
Chem Sci ; 12(40): 13557-13563, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34777775

RESUMO

Conventional solvothermal synthesis of core-shell nanoparticles results in them being covered with surfactant molecules for size control and stabilization, undermining their practicality as electrocatalysts. Here, we report an electrochemical method for the synthesis of core-shell nanoparticles directly on electrodes, free of surfactants. By implementation of selective electrodeposition on gold cores, 1st-row transition metal shells were constructed with facile and precise thickness control. This type of metal-on-metal core-shell synthesis by purely electrochemical means is the first of its kind. The applicability of the nanoparticle decorated electrodes was demonstrated by alkaline oxygen evolution catalysis, during which the Au-Ni example displayed stable catalysis with low overpotential.

12.
Sci Adv ; 7(20)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33980487

RESUMO

The harvesting of photosynthetic electrons (PEs) directly from photosynthetic complexes has been demonstrated over the past decade. However, their limited efficiency and stability have hampered further practical development. For example, despite its importance, the interfacial electron transfer between the photosynthetic apparatus and the electrode has received little attention. In this study, we modified electrodes with RuO2 nanosheets to enhance the extraction of PEs from thylakoids, and the PE transfer was promoted by proton adsorption and surface polarity characteristics. The adsorbed protons maintained the potential of an electrode more positive, and the surface polarity enhanced thylakoid attachment to the electrode in addition to promoting ensemble docking between the redox species and the electrode. The RuO2 bioanode exhibited a five times larger current density and a four times larger power density than the Au bioanode. Last, the electric calculators were successfully powered by photosynthetic energy using a RuO2 bioanode.

13.
Nat Commun ; 11(1): 4921, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004820

RESUMO

Despite highly promising characteristics of three-dimensionally (3D) nanostructured catalysts for the oxygen evolution reaction (OER) in polymer electrolyte membrane water electrolyzers (PEMWEs), universal design rules for maximizing their performance have not been explored. Here we show that woodpile (WP)-structured Ir, consisting of 3D-printed, highly-ordered Ir nanowire building blocks, improve OER mass activity markedly. The WP structure secures the electrochemically active surface area (ECSA) through enhanced utilization efficiency of the extended surface area of 3D WP catalysts. Moreover, systematic control of the 3D geometry combined with theoretical calculations and various electrochemical analyses reveals that facile transport of evolved O2 gas bubbles is an important contributor to the improved ECSA-specific activity. The 3D nanostructuring-based improvement of ECSA and ECSA-specific activity enables our well-controlled geometry to afford a 30-fold higher mass activity of the OER catalyst when used in a single-cell PEMWE than conventional nanoparticle-based catalysts.

14.
Chem Commun (Camb) ; 56(67): 9624-9627, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32815947

RESUMO

Poly(3,4-ethylenedioxythiophene) (PEDOT) is an important material widely used in electronics for its hole conducting property. A novel strategy for the synthesis of nanoparticulate PEDOT was developed by emulsion droplet electrochemistry. Taking advantage of the space confinement in emulsions, PEDOT nanoparticles were size controllable without use of a separate template. Potential applications were investigated by implementing the PEDOT nanoparticle decorated electrodes as a supercapacitor and a hole transport layer in an organic light emitting diode.

15.
Chemistry ; 26(18): 4039-4043, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31667888

RESUMO

Mixed-metal oxyhydroxides-especially those of Ni and Fe-are one of the most active classes of materials known for catalyzing the oxygen evolution reaction (OER). Here, nanoparticulate mixed metal oxyhydroxides (of Ni, Fe, and Co) were prepared on an electrode surface by electrochemical reaction of a precursor solution encapsulated in aqueous nanodroplets (AnDs), with each of the droplets containing 10 s of attoliters of fluid. Electrode reactions and synthesis can be monitored in situ by electrochemistry as single AnD stochastically lands and interacts with the working electrode. Resultant metal oxyhydroxide nanoparticles can be size and composition controlled precisely by modulating the precursor solution stored in the AnD. Nanoparticulate metal oxyhydroxides were implemented as catalysts for the OER and exhibited superior catalysis compared to their thin-film counterparts, demonstrating a hundred-thousand-fold enhancement in atom efficiency at comparable turnover rates.

16.
Chem Commun (Camb) ; 55(84): 12659-12662, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31584045

RESUMO

Herein, a water-soluble molecular copper complex was investigated as a catalyst for O2 reduction in both water and an organic solvent. Although the quasi-stoichiometric oxygen reduction reaction (ORR) for the formation of H2O2 was conducted in an organic solvent and revealed mechanistic insights into the ORR, the electrocatalytic production of H2O2 was achieved in an aqueous medium.

17.
Sci Rep ; 9(1): 5779, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962494

RESUMO

Zeolitic imidazolate framework-302 (ZIF-302)-embedded cellulose acetate (CA) membranes for osmotic driven membrane process (ODMPs) were fabricated using the phase inversion method. We investigated the effects of different fractions of ZIF-302 in the CA membrane to understand their influence on ODMPs performance. Osmotic water transport was evaluated using different draw solution concentrations to investigate the effects of ZIF-302 contents on the performance parameters. CA/ZIF-302 membranes showed fouling resistance to sodium alginate by a decreased water flux decline and increased recovery ratio in the pressure retarded osmosis (PRO) mode. Results show that the hydrothermally stable ZIF-302-embedded CA/ZIF-302 composite membrane is expected to be durable in water and alginate-fouling conditions.

18.
J Am Chem Soc ; 140(47): 16178-16183, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30388001

RESUMO

Oxalate oxidation in the presence of different oxidized luminophores leads to the emission of light and has been studied extensively in electrogenerated chemiluminescence (ECL). The proposed mechanism involves the initial formation of the oxalate radical anion, C2O4•-. The ensuing decomposition of C2O4•- produces a very strong reductant, CO2•-, which reacts with the oxidized luminophores to generate excited states that emit light. Although the mechanism has been proposed for decades, the experimental demonstration is still lacking, because of the complexity of the system and the short lifetimes of both radical anions. To address these issues, we studied oxalate oxidation at platinum ultramicroelectrodes (UMEs) in anhydrous N, N-dimethylformamide (DMF) solution by nanoscale scanning electrochemical microscopy (SECM) with the tip generation/substrate collection (TG/SC) mode. A Pt nanoelectrode was utilized as the SECM generator for oxalate oxidation, while another Pt UME served as the SECM collector and was used to capture the generated intermediates. We studied the influence of the gap distance, d, on the substrate current ( is). The results indicate that, when 73 nm < d < 500 nm, the species captured by the substrate were primarily CO2•-, while C2O4•- was the predominant intermediate measured when d was below 73 nm. A half-life of 1.3 µs for C2O4•- was obtained, which indicates a stepwise mechanism for oxalate oxidation. The relevance of these observations to the use of oxalate as the coreactant in ECL systems is also discussed.

19.
J Am Chem Soc ; 140(42): 13663-13671, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30351135

RESUMO

Achieving a molecular level understanding of chemical reactions on the surface of solid-state nanomaterials is important, but challenging. For example, the fully saturated basal plane is believed to be practically inert and its surface chemistry has been poorly explored, while two-dimensional (2D) layered transition-metal chalcogenides (TMCs) display unique reactivities due to their unusual anisotropic nature, where the edges consisting of unsaturated metals and chalcogens are sites for key chemical reactions. Herein, we report the use of Lewis acids/bases to elucidate the chemical reactivity of the basal plane in 2D layered TMCs. Electrophilic addition by Lewis acids (i.e., AlCl3) selectively onto sulfides in the basal plane followed by transmetalation and subsequent etching affords nanopores where such chemical activations are initiated and propagated from the localized positions of the basal plane. This new method of surface modification is generally applicable not only to various chemical compositions of TMCs, but also in crystal geometries such as 1T and 2H. Nanoporous NbS2 obtained by this method was found to have an enhanced electrochemical energy storage capacity, offering this chemical strategy to obtain functional 2D layered nanostructures.

20.
Chem Commun (Camb) ; 54(72): 10052-10055, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30124710

RESUMO

Stochastic collisions of aqueous nanodroplets (AnDs) on a microelectrode were observed in situ by electrochemistry. Reduction of Cu2+ ions enclosed in the reacting AnDs resulted in surfactant-free synthesis of copper nanoparticles on the electrode surface. The particle size distribution was reasonably controllable by the modulation of electrode voltage. The versatility of the synthetic method was established by its application in synthesizing nanoparticles of silver and cobalt oxyhydroxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA