Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Breast Cancer ; 26(5): 405-435, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37926067

RESUMO

Breast cancer is a significant cause of cancer-related mortality in women worldwide. Early and precise diagnosis is crucial, and clinical outcomes can be markedly enhanced. The rise of artificial intelligence (AI) has ushered in a new era, notably in image analysis, paving the way for major advancements in breast cancer diagnosis and individualized treatment regimens. In the diagnostic workflow for patients with breast cancer, the role of AI encompasses screening, diagnosis, staging, biomarker evaluation, prognostication, and therapeutic response prediction. Although its potential is immense, its complete integration into clinical practice is challenging. Particularly, these challenges include the imperatives for extensive clinical validation, model generalizability, navigating the "black-box" conundrum, and pragmatic considerations of embedding AI into everyday clinical environments. In this review, we comprehensively explored the diverse applications of AI in breast cancer care, underlining its transformative promise and existing impediments. In radiology, we specifically address AI in mammography, tomosynthesis, risk prediction models, and supplementary imaging methods, including magnetic resonance imaging and ultrasound. In pathology, our focus is on AI applications for pathologic diagnosis, evaluation of biomarkers, and predictions related to genetic alterations, treatment response, and prognosis in the context of breast cancer diagnosis and treatment. Our discussion underscores the transformative potential of AI in breast cancer management and emphasizes the importance of focused research to realize the full spectrum of benefits of AI in patient care.

2.
PLoS One ; 17(11): e0277412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417387

RESUMO

Since the prohibition of antibiotics as animal growth promoters, demand for effective probiotic strains has steadily increased. The goal is to maintain productivity and mitigate environmental concerns in the livestock industry. There are many probiotic animal-diet supplements available, over 2,000 products in the Republic of Korea alone, with little explanation about the desirable properties of each probiotic strain. The purpose of this study was to describe the underlying logic and methods used to select two novel strains of probiotic candidates. To economically screen these candidates, the abundance of surfactin secreted was used as an in vitro marker. We used a modified oil-misting method to screen ~2,000 spore-forming bacteria for novel strains of Bacillus subtilis. Of these, 18 strains were initially selected based on the semiquantitative criterion that they secreted more surfactin than B. subtilis ATCC21322 on Luria-Berani (LB) agar plates. The whole genome sequence was determined for two of the 18 strains to verify their identity. A phylogeny of 1,162 orthologous genes, genome contents, and genome organization confirmed them as novel strains. The surfactin profiles produced by these two strains consisted of at least four isoforms similar to standard surfactin and enhanced cellulase activities up to 50%. Four fractionated individual isoforms of surfactin suppressed inflammation induced by lipopolysaccharides. The half-maximal inhibitory concentration (IC50) was about 20 µM for each isoform. Both selected strains were susceptible to seven important antibiotics. Our results implied that an abundant secretion of surfactin was a useful biomarker in vitro and could be utilized for mining probiotic candidates through high-throughput screening of environmental samples.


Assuntos
Bacillus subtilis , Probióticos , Animais , Bacillus subtilis/genética , Transporte Biológico , Pesquisa , Antibacterianos
3.
JAMA Netw Open ; 5(8): e2229289, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044215

RESUMO

Importance: The efficient and accurate interpretation of radiologic images is paramount. Objective: To evaluate whether a deep learning-based artificial intelligence (AI) engine used concurrently can improve reader performance and efficiency in interpreting chest radiograph abnormalities. Design, Setting, and Participants: This multicenter cohort study was conducted from April to November 2021 and involved radiologists, including attending radiologists, thoracic radiology fellows, and residents, who independently participated in 2 observer performance test sessions. The sessions included a reading session with AI and a session without AI, in a randomized crossover manner with a 4-week washout period in between. The AI produced a heat map and the image-level probability of the presence of the referrable lesion. The data used were collected at 2 quaternary academic hospitals in Boston, Massachusetts: Beth Israel Deaconess Medical Center (The Medical Information Mart for Intensive Care Chest X-Ray [MIMIC-CXR]) and Massachusetts General Hospital (MGH). Main Outcomes and Measures: The ground truths for the labels were created via consensual reading by 2 thoracic radiologists. Each reader documented their findings in a customized report template, in which the 4 target chest radiograph findings and the reader confidence of the presence of each finding was recorded. The time taken for reporting each chest radiograph was also recorded. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were calculated for each target finding. Results: A total of 6 radiologists (2 attending radiologists, 2 thoracic radiology fellows, and 2 residents) participated in the study. The study involved a total of 497 frontal chest radiographs-247 from the MIMIC-CXR data set (demographic data for patients were not available) and 250 chest radiographs from MGH (mean [SD] age, 63 [16] years; 133 men [53.2%])-from adult patients with and without 4 target findings (pneumonia, nodule, pneumothorax, and pleural effusion). The target findings were found in 351 of 497 chest radiographs. The AI was associated with higher sensitivity for all findings compared with the readers (nodule, 0.816 [95% CI, 0.732-0.882] vs 0.567 [95% CI, 0.524-0.611]; pneumonia, 0.887 [95% CI, 0.834-0.928] vs 0.673 [95% CI, 0.632-0.714]; pleural effusion, 0.872 [95% CI, 0.808-0.921] vs 0.889 [95% CI, 0.862-0.917]; pneumothorax, 0.988 [95% CI, 0.932-1.000] vs 0.792 [95% CI, 0.756-0.827]). AI-aided interpretation was associated with significantly improved reader sensitivities for all target findings, without negative impacts on the specificity. Overall, the AUROCs of readers improved for all 4 target findings, with significant improvements in detection of pneumothorax and nodule. The reporting time with AI was 10% lower than without AI (40.8 vs 36.9 seconds; difference, 3.9 seconds; 95% CI, 2.9-5.2 seconds; P < .001). Conclusions and Relevance: These findings suggest that AI-aided interpretation was associated with improved reader performance and efficiency for identifying major thoracic findings on a chest radiograph.


Assuntos
Aprendizado Profundo , Derrame Pleural , Pneumonia , Pneumotórax , Adulto , Inteligência Artificial , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia/diagnóstico por imagem
4.
Sensors (Basel) ; 22(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35808502

RESUMO

The ability to accurately predict the prognosis and intervention requirements for treating highly infectious diseases, such as COVID-19, can greatly support the effective management of patients, especially in resource-limited settings. The aim of the study is to develop and validate a multimodal artificial intelligence (AI) system using clinical findings, laboratory data and AI-interpreted features of chest X-rays (CXRs), and to predict the prognosis and the required interventions for patients diagnosed with COVID-19, using multi-center data. In total, 2282 real-time reverse transcriptase polymerase chain reaction-confirmed COVID-19 patients' initial clinical findings, laboratory data and CXRs were retrospectively collected from 13 medical centers in South Korea, between January 2020 and June 2021. The prognostic outcomes collected included intensive care unit (ICU) admission and in-hospital mortality. Intervention outcomes included the use of oxygen (O2) supplementation, mechanical ventilation and extracorporeal membrane oxygenation (ECMO). A deep learning algorithm detecting 10 common CXR abnormalities (DLAD-10) was used to infer the initial CXR taken. A random forest model with a quantile classifier was used to predict the prognostic and intervention outcomes, using multimodal data. The area under the receiver operating curve (AUROC) values for the single-modal model, using clinical findings, laboratory data and the outputs from DLAD-10, were 0.742 (95% confidence interval [CI], 0.696−0.788), 0.794 (0.745−0.843) and 0.770 (0.724−0.815), respectively. The AUROC of the combined model, using clinical findings, laboratory data and DLAD-10 outputs, was significantly higher at 0.854 (0.820−0.889) than that of all other models (p < 0.001, using DeLong's test). In the order of importance, age, dyspnea, consolidation and fever were significant clinical variables for prediction. The most predictive DLAD-10 output was consolidation. We have shown that a multimodal AI model can improve the performance of predicting both the prognosis and intervention in COVID-19 patients, and this could assist in effective treatment and subsequent resource management. Further, image feature extraction using an established AI engine with well-defined clinical outputs, and combining them with different modes of clinical data, could be a useful way of creating an understandable multimodal prediction model.


Assuntos
COVID-19 , Inteligência Artificial , COVID-19/diagnóstico , COVID-19/terapia , Humanos , Unidades de Terapia Intensiva , Prognóstico , Estudos Retrospectivos
5.
Korean J Radiol ; 23(5): 505-516, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35434976

RESUMO

OBJECTIVE: To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. MATERIALS AND METHODS: A commercial deep learning-based software for mammography was validated using external data collected from 200 patients, 100 each with and without breast cancer (40 with benign lesions and 60 without lesions) from one hospital. Ten readers, including five breast specialist radiologists (BSRs) and five general radiologists (GRs), assessed all mammography images using a seven-point scale to rate the likelihood of malignancy in two sessions, with and without the aid of the AI-based software, and the reading time was automatically recorded using a web-based reporting system. Two reading sessions were conducted with a two-month washout period in between. Differences in the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and reading time between reading with and without AI were analyzed, accounting for data clustering by readers when indicated. RESULTS: The AUROC of the AI alone, BSR (average across five readers), and GR (average across five readers) groups was 0.915 (95% confidence interval, 0.876-0.954), 0.813 (0.756-0.870), and 0.684 (0.616-0.752), respectively. With AI assistance, the AUROC significantly increased to 0.884 (0.840-0.928) and 0.833 (0.779-0.887) in the BSR and GR groups, respectively (p = 0.007 and p < 0.001, respectively). Sensitivity was improved by AI assistance in both groups (74.6% vs. 88.6% in BSR, p < 0.001; 52.1% vs. 79.4% in GR, p < 0.001), but the specificity did not differ significantly (66.6% vs. 66.4% in BSR, p = 0.238; 70.8% vs. 70.0% in GR, p = 0.689). The average reading time pooled across readers was significantly decreased by AI assistance for BSRs (82.73 vs. 73.04 seconds, p < 0.001) but increased in GRs (35.44 vs. 42.52 seconds, p < 0.001). CONCLUSION: AI-based software improved the performance of radiologists regardless of their experience and affected the reading time.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Mamografia/métodos , Radiologistas , Estudos Retrospectivos , Sensibilidade e Especificidade , Software
6.
Arch Pharm Res ; 34(1): 37-41, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21468913

RESUMO

A new eudesmanolide, 1ß,3ß-dihydroxy-eudesman-11(13)-en-6α,12-olide (1) was isolated and identified from Taraxacum mongolicum, together with two known compounds, 1ß,3ß-dihydroxyeudesman-6α,12-olide (2) and loliolide (3). The structure of 1 was established by analysis of its physical and spectroscopic data. 1 was found to have an inhibitory activity on nitric oxide production with an IC(50) of 38.9 µM in activated RAW 264.7 cells.


Assuntos
Óxido Nítrico/antagonistas & inibidores , Sesquiterpenos/farmacologia , Taraxacum/química , Animais , Benzofuranos/administração & dosagem , Benzofuranos/isolamento & purificação , Benzofuranos/farmacologia , Linhagem Celular , Concentração Inibidora 50 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/biossíntese , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos de Eudesmano/administração & dosagem , Sesquiterpenos de Eudesmano/isolamento & purificação , Sesquiterpenos de Eudesmano/farmacologia
7.
J Microbiol Biotechnol ; 20(8): 1189-91, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20798580

RESUMO

In an ongoing investigation of compounds from natural products that exhibit anti-aging properties, hydroxyhibiscone A (1), a new furanosesquiterpenoid, together with hibiscone D (2), was isolated from the root bark of Hibiscus syriacus. Utilizing UV, IR, NMR, and MS spectroscopic analyses, these chemical structures were revealed. Compounds 1 and 2 were found to possess significant anti-aging properties on the human neutrophil elastase (HNE) assay, exhibiting HNE inhibitory activities with IC50 values of 5.2 and 4.6 micronM, respectively.


Assuntos
Hibiscus/química , Elastase de Leucócito/antagonistas & inibidores , Extratos Vegetais/farmacologia , Proteínas Secretadas Inibidoras de Proteinases/farmacologia , Hibiscus/metabolismo , Humanos , Elastase de Leucócito/análise , Elastase de Leucócito/metabolismo , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/química , Proteínas Secretadas Inibidoras de Proteinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA