Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Lett ; 14(2): 355-365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374901

RESUMO

Subretinal prostheses have been developed to stimulate survived retinal ganglion cells (RGCs), indirectly following the physiological visual pathways. However, current spreading from the prosthesis electrode causes the activation of unintended RGCs, thereby limiting the spatial resolution of artificial vision. This study proposes a strategy for focal stimulation of RGCs using a subretinal electrode array, in which six hexagonally arranged peripheral electrodes surround a stimulating electrode. RGCs in an in-vitro condition were subretinally stimulated using a fabricated electrode array coated with iridium oxide, following the three different stimulation configurations (with no peripheral, six electrodes of opposite current, and six ground). In-vitro experiments showed that the stimulation with six electrodes of opposite current was most effective in controlling RGC responses with a high spatial resolution. The results suggest that the effective utilization of return electrodes, such as by applying an opposite current to them, could help reduce current spreading beyond the local area targeted for stimulation and elicit RGC responses only in the vicinity of the stimulating electrode. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-023-00342-3.

2.
Bioengineering (Basel) ; 10(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37892865

RESUMO

This study aims to investigate the efficacy of electrical stimulation by comparing network-mediated RGC responses in normal and degenerate retinas using a N-methyl-N-nitrosourea (MNU)-induced non-human primate (NHPs) retinitis pigmentosa (RP) model. Adult cynomolgus monkeys were used for normal and outer retinal degeneration (RD) induced by MNU. The network-mediated RGC responses were recorded from the peripheral retina mounted on an 8 × 8 multielectrode array (MEA). The amplitude and duration of biphasic current pulses were modulated from 1 to 50 µA and 500 to 4000 µs, respectively. The threshold charge density for eliciting a network-mediated RGC response was higher in the RD monkeys than in the normal monkeys (1.47 ± 0.13 mC/cm2 vs. 1.06 ± 0.09 mC/cm2, p < 0.05) at a 500 µs pulse duration. The monkeys required a higher charge density than rodents among the RD models (monkeys; 1.47 ± 0.13 mC/cm2, mouse; 1.04 ± 0.09 mC/cm2, and rat; 1.16 ± 0.16 mC/cm2, p < 0.01). Increasing the pulse amplitude and pulse duration elicited more RGC spikes in the normal primate retinas. However, only pulse amplitude variation elicited more RGC spikes in degenerate primate retinas. Therefore, the pulse strategy for primate RD retinas should be optimized, eventually contributing to retinal prosthetics. Given that RD NHP RGCs are not sensitive to pulse duration, using shorter pulses may potentially be a more charge-effective approach for retinal prosthetics.

3.
Korean J Physiol Pharmacol ; 27(6): 541-553, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884286

RESUMO

Retinal prostheses have shown some clinical success in restoring vision in patients with retinitis pigmentosa. However, the post-implantation visual acuity does not exceed that of legal blindness. The reason for the poor visual acuity might be that (1) degenerate retinal ganglion cells (RGCs) are less responsive to electrical stimulation than normal RGCs, and (2) electrically-evoked RGC spikes show a more widespread not focal response. The single-biphasic pulse electrical stimulation, commonly used in artificial vision, has limitations in addressing these issues. In this study, we propose the benefit of multiple consecutive-biphasic pulse stimulation. We used C57BL/6J mice and C3H/HeJ (rd1) mice for the normal retina and retinal degeneration model. An 8 × 8 multi-electrode array was used to record electrically-evoked RGC spikes. We compared RGC responses when increasing the amplitude of a single biphasic pulse versus increasing the number of consecutive biphasic pulses at the same stimulus charge. Increasing the amplitude of a single biphasic pulse induced more RGC spike firing while the spatial resolution of RGC populations decreased. For multiple consecutive-biphasic pulse stimulation, RGC firing increased as the number of pulses increased, and the spatial resolution of RGC populations was well preserved even up to 5 pulses. Multiple consecutive-biphasic pulse stimulation using two or three pulses in degenerate retinas induced as much RGC spike firing as in normal retinas. These findings suggest that the newly proposed multiple consecutive-biphasic pulse stimulation can improve the visual acuity in prosthesis-implanted patients.

4.
Biomed Eng Lett ; 13(2): 129-140, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37124107

RESUMO

Retinal pigmentosa (RP) patients lose vision due to the loss of photoreceptors. Retinal prostheses bypass the dead photoreceptors by electrically stimulating surviving retinal neurons, such as bipolar cells or retinal ganglion cells (RGCs). In previous studies, stimulus charge has been mainly optimized to maximize the RGC response to electrical stimulation. This study aimed to investigate the effect of amplitude and duration even under the same charge condition on eliciting RGC spikes in the wild-type and degenerate retinas. Wild-type (WT) Sprague-Dawley rats were used as the normal retinal model, and Pde6b knockout rats were used as a retinal degeneration (RD) model. Electrically-evoked RGC spikes were recorded from isolated rat retinas using an 8 × 8 multielectrode array. The same charge was maintained (10 or 20 nC), and electrical stimulation was applied to WT and RD retinas, adjusting the amplitude and duration of the 1st phase of biphasic pulses. In the pulse modulation of the 1st phase, high amplitude (short duration) pulses induced more RGC spikes than low amplitude (long duration) pulses. Both WT and RD retinas showed a significant reduction in the number of RGC spikes upon stimulation with lower amplitude (longer duration) pulses. In clinical trials where stimulus charges are delivered to the degenerate retina of blind patients, high amplitude (short duration) pulses would help elicit more RGC spikes.

5.
J Neural Eng ; 20(1)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36603218

RESUMO

Objective:The main objective of this study was to induce and evaluate drug-dose-dependent outer retinal degeneration in cynomolgus monkeys by application of N-methyl-N-nitrosourea (MNU).Approach:Intravitreal temporary tamponade induced outer retinal degeneration with MNU solutions (2-3 mg ml-1) after vitrectomy in five cynomolgus monkeys. Optical coherence tomography (OCT), fundus autofluorescence (FAF), full-field electroretinography (ffERG), and visual evoked potentials (VEP) were performed at baseline and weeks 2, 6, and 12 postoperatively. At week 12, OCT angiography, histology, and immunohistochemistry were performed.Main results:Outer retinal degeneration was observed in four monkeys, especially in the peripheral retina. Anatomical and functional changes occurred at week 2 and persisted until week 12. FAF images showed hypoautofluorescence dots, similar to AF patterns seen in human retinitis pigmentosa. Hyperautofluorescent lesions in the pericentral area were also observed, which corresponded to the loss of the ellipsoid zone on OCT images. OCT revealed thinning of the outer retinal layer adding to the loss of the ellipsoid zone outside the vascular arcade. Histological findings confirmed that the abovementioned changes resulted from a gradual loss of photoreceptors from the perifovea to the peripheral retina. In contrast, the inner retina, including ganglion cell layers, was preserved. Functionally, a decrease or extinction of scotopic ffERGs was observed, which indicated rod-dominant loss. Nevertheless, VEPs were relatively preserved.Significance:Therefore, we can conclude that temporary exposure to intravitreal MNU tamponade after vitrectomy induces rod-dominant outer retinal degeneration in cynomolgus monkeys, especially in the peripheral retina.


Assuntos
Degeneração Retiniana , Animais , Macaca fascicularis , Metilnitrosoureia/efeitos adversos , Potenciais Evocados Visuais , Retina/patologia , Primatas , Tomografia de Coerência Óptica/métodos
6.
Front Cell Neurosci ; 16: 926096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936494

RESUMO

One of the critical prerequisites for the successful development of retinal prostheses is understanding the physiological features of retinal ganglion cells (RGCs) in the different stages of retinal degeneration (RD). This study used our custom-made rd10 mice, C57BL/6-Pde6bem1(R560C)Dkl /Korl mutated on the Pde6b gene in C57BL/6J mouse with the CRISPR/Cas9-based gene-editing method. We selected the postnatal day (P) 45, P70, P140, and P238 as representative ages for RD stages. The optomotor response measured the visual acuity across degeneration stages. At P45, the rd10 mice exhibited lower visual acuity than wild-type (WT) mice. At P140 and older, no optomotor response was observed. We classified RGC responses to the flashed light into ON, OFF, and ON/OFF RGCs via in vitro multichannel recording. With degeneration, the number of RGCs responding to the light stimulation decreased in all three types of RGCs. The OFF response disappeared faster than the ON response with older postnatal ages. We elicited RGC spikes with electrical stimulation and analyzed the network-mediated RGC response in the rd10 mice. Across all postnatal ages, the spikes of rd10 RGCs were less elicited by pulse amplitude modulation than in WT RGCs. The ratio of RGCs showing multiple peaks of spike burst increased in older ages. The electrically evoked RGC spikes by the pulse amplitude modulation differ across postnatal ages. Therefore, degeneration stage-dependent stimulation strategies should be considered for developing retinal prosthesis and successful vision restoration.

7.
Front Cell Neurosci ; 16: 889663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602554

RESUMO

Retinal prostheses have shown some clinical success in patients with retinitis pigmentosa and age-related macular degeneration. However, even after the implantation of a retinal prosthesis, the patient's visual acuity is at best less than 20/420. Reduced visual acuity may be explained by a decrease in the signal-to-noise ratio due to the spontaneous hyperactivity of retinal ganglion cells (RGCs) found in degenerate retinas. Unfortunately, abnormal retinal rewiring, commonly observed in degenerate retinas, has rarely been considered for the development of retinal prostheses. The purpose of this study was to investigate the aberrant retinal network response to electrical stimulation in terms of the spatial distribution of the electrically evoked RGC population. An 8 × 8 multielectrode array was used to measure the spiking activity of the RGC population. RGC spikes were recorded in wild-type [C57BL/6J; P56 (postnatal day 56)], rd1 (P56), rd10 (P14 and P56) mice, and macaque [wild-type and drug-induced retinal degeneration (RD) model] retinas. First, we performed a spike correlation analysis between RGCs to determine RGC connectivity. No correlation was observed between RGCs in the control group, including wild-type mice, rd10 P14 mice, and wild-type macaque retinas. In contrast, for the RD group, including rd1, rd10 P56, and RD macaque retinas, RGCs, up to approximately 400-600 µm apart, were significantly correlated. Moreover, to investigate the RGC population response to electrical stimulation, the number of electrically evoked RGC spikes was measured as a function of the distance between the stimulation and recording electrodes. With an increase in the interelectrode distance, the number of electrically evoked RGC spikes decreased exponentially in the control group. In contrast, electrically evoked RGC spikes were observed throughout the retina in the RD group, regardless of the inter-electrode distance. Taken together, in the degenerate retina, a more strongly coupled retinal network resulted in the widespread distribution of electrically evoked RGC spikes. This finding could explain the low-resolution vision in prosthesis-implanted patients.

8.
Sci Rep ; 11(1): 24135, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921172

RESUMO

Retinal prosthesis is regarded as the treatment for vision restoration in the blind with retinal degeneration (RD) due to the loss of photoreceptors. A strategy for retinal prosthesis is to electrically activate surviving neurons. The retina's response to electrical stimulation in a larger RD model has not been studied yet. Therefore, in this study, we investigated electrically evoked retinal responses in a previously validated N-methyl-N-nitrosourea (MNU)-induced porcine RD model. Electrically evoked responses were evaluated based on the number of retinal ganglion cell (RGC) spikes via multichannel recordings. Stimulation pulses were applied to degenerative and wild-type retinas with pulse modulation. Compared to wild-type retinas, degenerative retinas showed higher threshold values of pulse amplitude and pulse duration. The rate of increase in the number of RGC spikes relative to stimulus intensity was lower in degenerative retinas than in normal retinas. In severely degenerated retinas, few RGCs showed electrically evoked spikes. Our results suggest that the degenerative porcine retina requires a higher charge than the normal porcine retina. In the early stage of RD, it is easier to induce RGC spikes through electrical stimulation using retinal prosthesis; however, when the degeneration is severe, there may be difficulty recovering patient vision.


Assuntos
Potenciais Evocados Visuais/efeitos dos fármacos , Metilnitrosoureia/toxicidade , Degeneração Retiniana , Células Ganglionares da Retina/metabolismo , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Suínos , Porco Miniatura
9.
Sci Rep ; 11(1): 258, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420119

RESUMO

We aimed to develop an outer retinal degeneration pig model induced by temporary intravitreal loading of N-methyl-N-nitrosourea (MNU) during vitrectomy. In a preliminary experiment involving 5 mini-pig cases to determine the appropriate concentration of MNU, the vitreous cavity of each eye was filled with 4, 8, 10, 12, or 16 mg/mL MNU for 10 min, which was then replaced with a balanced salt solution. Multimodal examinations including spectral-domain optical coherence tomography (OCT) images and full-field electroretinography (ffERG) were obtained at baseline and week 2, week 6, and week 12. The retinal degeneration was classified according to the amplitudes of a dark adaptive (DA) 10.0 a-wave amplitude. The degree of moderate retinal degeneration was defined as DA 10.0 a-wave amplitude ≥ 10% and < 60% of baseline amplitude. The degree of severe degeneration was defined as DA 10.0 a-wave amplitude < 10% of baseline amplitude, noise, or flat signal. Hematoxylin and eosin staining and immunohistochemistry were performed at week 12. The main experiments were conducted first with 10 cases of 5 mg/mL and later with 13 cases of 10 mg/mL. In the preliminary experiment, degree of outer retinal degeneration increased with MNU concentration. Use of 4, 8, 10, 12, and 16 mg/mL MNU showed no, moderate, severe, severe, and atrophic changes, respectively. In the main experiments, there were 9 cases of moderate retinal degeneration and 1 case of severe degeneration in 5 mg/mL MNU group. Two cases of moderate degeneration and 11 of severe degeneration were recorded in 10 mg/mL group. Mean thickness of total retina, inner nuclear layer, and outer nuclear layer decreased at week 2 in both groups. The mean amplitudes on ffERG decreased at week 2. The ffERG and OCT findings did not change from week 2 to week 6 or week 12. The results of staining supported those of ffERG and OCT. Temporal MNU loading in a vitrectomized pig-eye model induced customized outer retinal degeneration with changing the concentration of MNU.


Assuntos
Modelos Animais de Doenças , Metilnitrosoureia/toxicidade , Degeneração Retiniana/induzido quimicamente , Vitrectomia/métodos , Animais , Relação Dose-Resposta a Droga , Eletrorretinografia , Injeções Intravítreas , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/patologia , Suínos , Porco Miniatura , Tomografia de Coerência Óptica
10.
Exp Neurobiol ; 29(6): 433-452, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33321473

RESUMO

Retinal ganglion cells (RGCs), the retina's output neurons, encode visual information through spiking. The RGC receptive field (RF) represents the basic unit of visual information processing in the retina. RFs are commonly estimated using the spike-triggered average (STA), which is the average of the stimulus patterns to which a given RGC is sensitive. Whereas STA, based on the concept of the average, is simple and intuitive, it leaves more complex structures in the RFs undetected. Alternatively, spike-triggered covariance (STC) analysis provides information on second-order RF statistics. However, STC is computationally cumbersome and difficult to interpret. Thus, the objective of this study was to propose and validate a new computational method, called spike-triggered clustering (STCL), specific for multimodal RFs. Specifically, RFs were fit with a Gaussian mixture model, which provides the means and covariances of multiple RF clusters. The proposed method recovered bipolar stimulus patterns in the RFs of ON-OFF cells, while the STA identified only ON and OFF RGCs, and the remaining RGCs were labeled as unknown types. In contrast, our new STCL analysis distinguished ON-OFF RGCs from the ON, OFF, and unknown RGC types classified by STA. Thus, the proposed method enables us to include ON-OFF RGCs prior to retinal information analysis.

11.
Exp Neurobiol ; 29(4): 285-299, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32921641

RESUMO

Neurons communicate with other neurons in response to environmental changes. Their goal is to transmit information to their targets reliably. A burst, which consists of multiple spikes within a short time interval, plays an essential role in enhancing the reliability of information transmission through synapses. In the visual system, retinal ganglion cells (RGCs), the output neurons of the retina, show bursting activity and transmit retinal information to the lateral geniculate neuron of the thalamus. In this study, to extend our interest to the population level, the burstings of multiple RGCs were simultaneously recorded using a multi-channel recording system. As the first step in network analysis, we focused on investigating the pairwise burst correlation between two RGCs. Furthermore, to assess if the population bursting is preserved across species, we compared the synchronized bursting of RGCs between marmoset monkey (callithrix jacchus), one species of the new world monkeys and mouse (C57BL/6J strain). First, monkey RGCs showed a larger number of spikes within a burst, while the inter-spike interval, burst duration, and inter-burst interval were smaller compared with mouse RGCs. Monkey RGCs showed a strong burst synchronization between RGCs, whereas mouse RGCs showed no correlated burst firing. Monkey RGC pairs showed significantly higher burst synchrony and mutual information than mouse RGC pairs did. Comprehensively, through this study, we emphasize that two species have a different bursting activity of RGCs and different burst synchronization suggesting two species have distinctive retinal processing.

12.
Exp Neurobiol ; 29(1): 38-49, 2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32122107

RESUMO

Retinal ganglion cells (RGCs) encode various spatiotemporal features of visual information into spiking patterns. The receptive field (RF) of each RGC is usually calculated by spike-triggered average (STA), which is fast and easy to understand, but limited to simple and unimodal RFs. As an alternative, spike-triggered covariance (STC) has been proposed to characterize more complex patterns in RFs. This study compares STA and STC for the characterization of RFs and demonstrates that STC has an advantage over STA for identifying novel spatiotemporal features of RFs in mouse RGCs. We first classified mouse RGCs into ON, OFF, and ON/OFF cells according to their response to full-field light stimulus, and then investigated the spatiotemporal patterns of RFs with random checkerboard stimulation, using both STA and STC analysis. We propose five sub-types (T1-T5) in the STC of mouse RGCs together with their physiological implications. In particular, the relatively slow biphasic pattern (T1) could be related to excitatory inputs from bipolar cells. The transient biphasic pattern (T2) allows one to characterize complex patterns in RFs of ON/OFF cells. The other patterns (T3-T5), which are contrasting, alternating, and monophasic patterns, could be related to inhibitory inputs from amacrine cells. Thus, combining STA and STC and considering the proposed sub-types unveil novel characteristics of RFs in the mouse retina and offer a more holistic understanding of the neural coding mechanisms of mouse RGCs.

13.
Sci Rep ; 10(1): 3588, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107442

RESUMO

We developed and characterized a canine model of outer retinal degeneration induced by sodium iodate (SI) intravitreal injection after vitrectomy. In the preliminary study, we repeatedly injected SI intravitreally into the eyes of three canines to develop outer retinal degeneration two weeks after vitrectomy. Based on the preliminary study, a single dose of either 1.2 mg or 1.0 mg SI/0.05 mL was also injected (1.2 mg in n = 5 canines, 1.0 mg in n = 2 canines). Spectral domain-optical coherence tomography (OCT), electroretinography (ERG), and histological examinations were performed at baseline and following intravitreal injection. In the preliminary study, after a 0.5-mg SI injection and a 1.0-mg SI injection and after two 0.8-mg SI injections, retinal degeneration with retinal thinning was observed on OCT imaging. In the second study, after a single 1.0- or 1.2-mg SI injection, outer retinal degeneration was induced. All eyes showed diffuse outer retinal degeneration on OCT and a loss of both cone and rod responses in ERG. Histological examination also showed the loss of outer retinal layer. Intravitreally injected SI (1.0-1.2 mg) in a vitrectomized canine model induced outer retinal degeneration effectively, and could be evaluated through in vivo ophthalmic examination.


Assuntos
Iodatos/efeitos adversos , Degeneração Retiniana/etiologia , Animais , Modelos Animais de Doenças , Cães , Feminino , Humanos , Injeções Intravítreas , Iodatos/administração & dosagem , Retina/anatomia & histologia , Retina/diagnóstico por imagem , Retina/efeitos dos fármacos , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/fisiopatologia , Tomografia de Coerência Óptica , Vitrectomia
14.
Sci Rep ; 9(1): 15696, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666618

RESUMO

We sought to develop and characterize outer retinal degeneration induced by intravitreal injection of sodium iodate (SI) after vitrectomy in rabbits. To determine the effective dose of SI, the right eyes of 19 male New Zealand white rabbits received an intravitreal injection of SI or sham. Based on the dose-dependence results, 0.4 mg of SI in 0.05 mL of total volume was injected into the right eyes of 10 rabbits at two weeks after vitrectomy. In the dose-dependence study, localized retinal atrophy was observed with 0.3- and 0.4-mg SI injections without vitrectomy. Severe and diffuse retinal atrophy was identified by spectral-domain optical coherence tomography (SD-OCT) at one month after a 0.5-mg SI injection following vitrectomy. In the second experiment, 0.4 mg of SI in 0.05 mL was injected, and the severity of outer retinal degeneration was graded as one of two types according to electroretinography (ERG) response change. There was no response on ERG in complete retinal degeneration, 30% of all 10 rabbits. Intravitreal injection of 0.4 mg of SI into vitrectomized rabbit eyes induces diffuse outer retinal degeneration, and the degree of retinal degeneration can be evaluated through in vivo ophthalmic examination.


Assuntos
Iodatos/farmacologia , Retina/efeitos dos fármacos , Degeneração Retiniana/tratamento farmacológico , Corpo Vítreo/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrorretinografia , Humanos , Injeções Intravítreas , Coelhos , Retina/diagnóstico por imagem , Retina/patologia , Degeneração Retiniana/patologia , Degeneração Retiniana/cirurgia , Tomografia de Coerência Óptica , Vitrectomia/métodos , Corpo Vítreo/diagnóstico por imagem , Corpo Vítreo/cirurgia
15.
J Neural Eng ; 16(5): 056016, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31357188

RESUMO

OBJECTIVE: Various retinal prostheses have been developed to restore the vision for blind patients, and some of them are already in clinical use. In this paper, we present a three-dimensional (3D) microelectrode array for a subretinal device that can effectively stimulate retinal cells. APPROACH: To investigate the effect of electrode designs on the electric field distribution, we simulated various electrode shapes and sizes using finite element analysis. Based on the simulation results, the 3D microelectrode array was fabricated and evaluated in in vitro condition. MAIN RESULTS: Through the simulation, we verified that an electrode design of square frustum was effective to stimulate with high contrast. Also, the 3D flexible and transparent microelectrode array based on silicon and polydimethylsiloxane was fabricated using micro-electro-mechanical system technologies. In in vitro experiments, the subretinally positioned 3D microelectrodes properly evoked spikes in retinal ganglion cells. The mean threshold current was 7.4 µA and the threshold charge density was 33.64 µC·cm-2 per phase. SIGNIFICANCE: The results demonstrate the feasibility of the fabricated 3D microelectrodes as the subretinal prosthesis. The developed microelectrode array would be integrated with the stimulation circuitry and implanted in animals for further in vivo experiments.


Assuntos
Eletrodos Implantados , Desenho de Equipamento/métodos , Maleabilidade , Retina/fisiologia , Próteses Visuais , Animais , Potenciais Evocados Visuais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Retina/citologia , Células Ganglionares da Retina/fisiologia
16.
Exp Neurobiol ; 28(1): 62-73, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30853825

RESUMO

Since genetic models for retinal degeneration (RD) in animals larger than rodents have not been firmly established to date, we sought in the present study to develop a new rabbit model of drug-induced RD. First, intravitreal injection of N-methyl-N-nitrosourea (MNU) without vitrectomy in rabbits was performed with different doses. One month after injection, morphological changes in the retinas were identified with ultra-wide-field color fundus photography (FP) and fundus autofluorescence (AF) imaging as well as spectral-domain optical coherence tomography (OCT). Notably, the degree of RD was not consistently correlated with MNU dose. Then, to check the effects of vitrectomy on MNU-induced RD, the intravitreal injection of MNU after vitrectomy in rabbits was also performed with different doses. In OCT, while there were no significant changes in the retinas for injections up to 0.1 mg (i.e., sham, 0.05 mg, and 0.1 mg), outer retinal atrophy and retinal atrophy of the whole layer were observed with MNU injections of 0.3 mg and 0.5 mg, respectively. With this outcome, 0.2 mg MNU was chosen to be injected into rabbit eyes (n=10) at two weeks after vitrectomy for further study. Six weeks after injection, morphological identification with FP, AF, OCT, and histology clearly showed localized outer RD - clearly bordered non-degenerated and degenerated outer retinal area - in all rabbits. We suggest our post-vitrectomy MNU-induced RD rabbit model could be used as an interim animal model for visual prosthetics before the transition to larger animal models.

17.
Korean J Physiol Pharmacol ; 21(5): 555-563, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28883759

RESUMO

Electrical stimulation through retinal prosthesis elicits both short and long-latency retinal ganglion cell (RGC) spikes. Because the short-latency RGC spike is usually obscured by electrical stimulus artifact, it is very important to isolate spike from stimulus artifact. Previously, we showed that topographic prominence (TP) discriminator based algorithm is valid and useful for artifact subtraction. In this study, we compared the performance of forward backward (FB) filter only vs. TP-adopted FB filter for artifact subtraction. From the extracted retinae of rd1 mice, we recorded RGC spikes with 8×8 multielectrode array (MEA). The recorded signals were classified into four groups by distances between the stimulation and recording electrodes on MEA (200-400, 400-600, 600-800, 800-1000 µm). Fifty cathodic phase-1st biphasic current pulses (duration 500 µs, intensity 5, 10, 20, 30, 40, 50, 60 µA) were applied at every 1 sec. We compared false positive error and false negative error in FB filter and TP-adopted FB filter. By implementing TP-adopted FB filter, short-latency spike can be detected better regarding sensitivity and specificity for detecting spikes regardless of the strength of stimulus and the distance between stimulus and recording electrodes.

18.
J Neural Eng ; 14(1): 016017, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28045002

RESUMO

OBJECTIVE: Direct stimulation of retinal ganglion cells in degenerate retinas by implanting epi-retinal prostheses is a recognized strategy for restoration of visual perception in patients with retinitis pigmentosa or age-related macular degeneration. Elucidating the best stimulus-response paradigms in the laboratory using multielectrode arrays (MEA) is complicated by the fact that the short-latency spikes (within 10 ms) elicited by direct retinal ganglion cell (RGC) stimulation are obscured by the stimulus artifact which is generated by the electrical stimulator. APPROACH: We developed an artifact subtraction algorithm based on topographic prominence discrimination, wherein the duration of prominences within the stimulus artifact is used as a strategy for identifying the artifact for subtraction and clarifying the obfuscated spikes which are then quantified using standard thresholding. MAIN RESULTS: We found that the prominence discrimination based filters perform creditably in simulation conditions by successfully isolating randomly inserted spikes in the presence of simple and even complex residual artifacts. We also show that the algorithm successfully isolated short-latency spikes in an MEA-based recording from degenerate mouse retinas, where the amplitude and frequency characteristics of the stimulus artifact vary according to the distance of the recording electrode from the stimulating electrode. By ROC analysis of false positive and false negative first spike detection rates in a dataset of one hundred and eight RGCs from four retinal patches, we found that the performance of our algorithm is comparable to that of a generally-used artifact subtraction filter algorithm which uses a strategy of local polynomial approximation (SALPA). SIGNIFICANCE: We conclude that the application of topographic prominence discrimination is a valid and useful method for subtraction of stimulation artifacts with variable amplitudes and shapes. We propose that our algorithm may be used as stand-alone or supplementary to other artifact subtraction algorithms like SALPA.


Assuntos
Potenciais de Ação/fisiologia , Algoritmos , Artefatos , Estimulação Elétrica/métodos , Reconhecimento Automatizado de Padrão/métodos , Tempo de Reação/fisiologia , Células Ganglionares da Retina/fisiologia , Animais , Análise Discriminante , Camundongos , Camundongos Endogâmicos C3H , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA