Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(25): 256703, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181333

RESUMO

Magnons in ferromagnets have one chirality, and typically are in the GHz range and have a quadratic dispersion near the zero wave vector. In contrast, magnons in antiferromagnets are commonly considered to have bands with both chiralities that are degenerate across the entire Brillouin zone, and to be in the THz range and to have a linear dispersion near the center of the Brillouin zone. Here we theoretically demonstrate a new class of magnons on a prototypical d-wave altermagnet RuO_{2} with the compensated antiparallel magnetic order in the ground state. Based on density-functional-theory calculations we observe that the THz-range magnon bands in RuO_{2} have an alternating chirality splitting, similar to the alternating spin splitting of the electronic bands, and a linear magnon dispersion near the zero wave vector. We also show that, overall, the Landau damping of this metallic altermagnet is suppressed due to the spin-split electronic structure, as compared to an artificial antiferromagnetic phase of the same RuO_{2} crystal with spin-degenerate electronic bands and chirality-degenerate magnon bands.

2.
Inorg Chem ; 60(10): 7023-7030, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33904713

RESUMO

A cubic quadruple perovskite oxide CeMn3Cr4O12 has been synthesized under high-pressure and high-temperature conditions of 8 GPa and 1273 K. The X-ray absorption spectroscopy reveals that the Ce ions are in a trivalent state, as represented by the ionic model of Ce3+Mn3+3Cr3+4O12. The magnetic study demonstrates three independent antiferromagnetic transitions attributed to Ce (∼10 K), Mn (46 K), and Cr (133 K) ions. Furthermore, a magnetic field-induced antiferromagnetic-to-ferromagnetic (metamagnetic) transition of Ce3+ 4f moments is observed at low temperatures below 20 K, exhibiting a rare example of metamagnetism in the Ce3+-oxides. This finding represents that the 3d-electron magnetic sublattices play a role in the metamagnetism of 4f-electron magnetic moments, demonstrating a new aspect of the 3d-4f complex electron systems.

3.
J Phys Condens Matter ; 27(8): 085602, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25662852

RESUMO

We investigate the electronic structure of (Sr1-xLax)2RhO4 using a combination of the density functional and dynamical mean-field theories. Unlike the earlier local density approximation plus Hubbard U (LDA + U) studies, we find no sizable enhancement of the spin-orbit splitting due to electronic correlations and show that such an enhancement is a spurious effect of the static mean-field approximation of the LDA + U method. The electron doping suppresses the importance of electronic correlations, which is reflected in the quasi-particle bandwidth increasing with x. (Sr1-xLax)2RhO4 can be classified as a weakly correlated metal, which becomes an itinerant in-plane ferromagnet (but possibly A-type antiferromagnet) due to Stoner instability around x = 0.2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA