Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888067

RESUMO

The rhizome of Zingiber officinale (Z. officinale), commonly known as ginger, has been characterized as a potential drug candidate due to its antitumor effects. However, the chemotherapeutic effect of ginger on human oral cancer remains poorly understood. In this study, we examined the effects of an ethanol extract of Z. officinale rhizomes (ZOE) on oral cancer and identified the components responsible for its pharmacological activity. ZOE exerts its inhibitory activity in oral cancer by inducing both autophagy and apoptosis simultaneously. Mechanistically, ZOE-induced autophagy and apoptosis in oral cancer are attributed to the reactive oxygen species (ROS)-mediated endoplasmic reticulum stress response. Additionally, we identified two active components of ZOE, 1-dehydro-6-gingerdione and 8-shogaol, which were sufficient to stimulate autophagy initiation and apoptosis induction by enhancing CHOP expression. These results suggest that ZOE and its two active components induce ROS generation, upregulate CHOP, initiate autophagy and apoptosis, and hold promising therapeutics against human oral cancer.

2.
Oncol Rep ; 51(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099422

RESUMO

Hypopharyngeal squamous cell carcinoma (HSCC) is a relatively rare form of head and neck cancer that is notorious for its poor prognosis and low overall survival rate. This highlights the need for new therapeutic options for this malignancy. The objective of the present study was to examine the ability of caffeic acid phenethyl ester (CAPE), which is an active compound found in propolis, to combat HSCC tumor growth. CAPE exerted its tumor­suppressive activity in HSCC cell lines through the induction of apoptosis. Mechanistically, the CAPE­mediated apoptotic process was attributed to the perturbation of the mitochondrial membrane potential and the activation of caspase­9. CAPE also modulated survivin and X­linked inhibitor of apoptosis, which are potent members of the inhibitors of apoptosis protein family, either through transcriptional or post­translational regulation, leading to HSCC cell line death. Therefore, the findings of the present study suggested that CAPE is an effective treatment alternative for HSCC via the stimulation of mitochondria­dependent apoptosis.


Assuntos
Neoplasias de Cabeça e Pescoço , Álcool Feniletílico , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Linhagem Celular Tumoral , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Apoptose , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
3.
Cell Oncol (Dordr) ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787967

RESUMO

PURPOSE: Neuropilin-2 (NRP2) is a multifunctional single-pass transmembrane receptor that binds to two disparate ligands, namely, vascular endothelial growth factors (VEGFs) and semaphorins (SEMAs). It is reportedly involved in neuronal and vascular development. In this study, we uncovered the exact functional role of NRP2 and its molecular mechanism during aggressive behaviors and lymph node (LN) metastasis in human head and neck cancer (HNC) and identified algal methanol extract as a potential novel NRP2 inhibitor. METHODS: In silico analyses and immunohistochemistry were used to investigate the relationship between NRP2 expression and the prognosis of HNC patients. The functional role of NRP2 on the proliferation, migration, invasion, and cancer stem cell (CSC) properties of HNC cells was examined by MTS, soft agar, clonogenic, transwell migration and invasion assays, and sphere formation assays. Signaling explorer antibody array, western blot, and qPCR were performed toward the investigation of a molecular mechanism that is related to NRP2. RESULTS: NRP2 was highly expressed in HNC and positively correlated with LN metastasis and advanced tumor stage and size in patients. Using loss- or gain-of-function approaches, we found that NRP2 promoted the proliferative, migratory, and invasive capacities of human HNC cells. Furthermore, NRP2 regulated Sox2 expression to exhibit aggressiveness and CSC properties of human HNC cells. We demonstrated that p90 ribosomal S6 kinase 1 (RSK1) elevates the aggressiveness and CSC properties of human HNC cells, possibly by mediating NRP2 and Sox2. Zeb1 was necessary for executing the NRP2/RSK1/Sox2 signaling pathway during the induction of epithelial-to-mesenchymal transition (EMT) and aggressive behaviors of human HNC cells. Moreover, the methanol extract of Codium fragile (MECF) repressed NRP2 expression, inhibiting the RSK1/Sox2/Zeb1 axis, which contributed to the reduction of aggressive behaviors of human HNC cells. CONCLUSIONS: These findings suggest that NRP2 is a critical determinant in provoking EMT and aggressive behaviors in human HNC through the RSK1/Sox2/Zeb1 axis, and MECF may have the potential to be a novel NRP2 inhibitor for treating metastasis in HNC patients.

4.
Arch Oral Biol ; 137: 105386, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35272061

RESUMO

OBJECTIVE: Extracts from the brown algae Sargassum micracanthum have documented anti-viral, anti-oxidant, and anti-inflammatory activities as well as potential anti-tumor efficacy against several cancer types. Here, we evaluated the inhibitory effect and molecular mechanisms of methanol extract of S. micracanthum (MESM) on the aggressiveness of human head and neck squamous cell carcinoma (HNSCC) using in vitro cell culture-based models. DESIGN: To test the potential efficacy of MESM on the migratory and invasive properties of HNSCC cells, we used wound healing, transwell cell migration and invasion assays. Proteome profiling and functional in silico analysis were applied to investigate the possible modes of action by MESM. We also examined the metabolite profiling of MESM using gas chromatography/mass spectrometry. RESULTS: MESM inhibited the motility of human HNSCC cell lines as well as invasiveness without influencing cell survival. Proteome profiling identified 19 oncogenic proteins significantly downregulated by MESM treatment. Protein-protein interaction network and gene ontology analyses revealed that Tie2 and associated angiogenic signaling pathway components were significantly enriched among these downregulated oncogenic proteins, which was confirmed by validating the reduced Tie2 expression in MESM treatment groups. Metabolite profiling of MESM identified six-carbon sugar alcohols such as D-sorbitol and/or D-mannitol as the main bioactive compounds. D-sorbitol and D-mannitol effectively reduced Tie2 expression and the aggressiveness of human HNSCC cell lines. CONCLUSIONS: These findings suggest that six-carbon sugar alcohols in MESM have promising anti-cancer efficacy for the treatment of human HNSCC and further identify Tie2 signaling components as potential treatment targets.


Assuntos
Neoplasias de Cabeça e Pescoço , Sargassum , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Metanol , Extratos Vegetais/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
5.
Cell Biol Toxicol ; 38(1): 147-165, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33665778

RESUMO

Abnormal expression of claudin-1 (CLDN1) has important roles in carcinogenesis and metastasis in various cancers. The role of CLDN1 in human oral squamous cell carcinoma (OSCC) remains unknown. Here, we report the functional role of CLDN1 in metastasis of human OSCC, as a potential target regulated by withaferin A. From gene expression profiling with microarray technology, we found that the majority of notable differentially expressed genes were classified into migration/invasion category. Withaferin A impaired the motility of human OSCC cells in vitro and suppressed metastatic nodule formation in an in vivo metastasis model, both associated with reduced CLDN1. CLDN1 overexpression enhanced metastatic nodule formation in vivo, resulting in severe metastatic lesions in lung tissue. Moreover, CLDN1 expression was positively correlated to lymphatic metastasis in OSCC patients. The impaired motility of human OSCC cells upon withaferin A treatment was restored by CLDN1 overexpression. Furthermore, upregulation of let-7a induced by withaferin A was inversely correlated to CLDN1 expression. Overall, these give us an insight into the function of CLDN1 for prognosis and treatment of human OSCC, substantiating further investigation into the use of withaferin A as good anti-metastatic drug candidate.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Claudina-1/genética , Claudina-1/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Vitanolídeos
6.
Phytomedicine ; 91: 153670, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34391081

RESUMO

BACKGROUND: Sedum species are reported to possess diverse pharmacological activities in various solid tumors. However, the anticancer functions of Sedum orizyfolium and its constituents have never been determined in human cancers. PURPOSE: The present study focused on addressing the inhibition efficacy of the methanol extract of S. orizyfolium (MESO) and its constituents and the molecular mechanism underlying invasion and epithelial-to-mesenchymal transition (EMT) in oral squamous cell carcinoma (OSCC) cell lines. STUDY DESIGN/METHODS: After MESO treatment, a wound-healing assay, an invasion assay, and immunocytochemistry were performed in OSCC cell lines, coupled with in silico analysis and immunohistochemistry in OSCC patient samples, to investigate the role of the EMT transcription factor Slug. Trehalose, an active component of MESO, was identified through gas chromatography-mass spectrometry. RESULTS: Among the methanol extracts of 18 various wild plants from South Korea, MESO exhibited the highest anticancer functionality in OSCC cells by downregulating Slug expression. In silico analysis and immunohistochemistry indicated that elevated Slug levels are remarkably associated with tumor progression and invasion in patients with OSCC, suggesting that changes in Slug expression alter EMT progression and invasion in OSCC. Notably, treatment with trehalose, a sugar component of MESO, inhibited invasiveness and Slug expression in OSCC cells. CONCLUSION: Cumulatively, this study highlighted the beneficial role of MESO and trehalose in the inhibition of invasiveness of OSCC cells via suppression of Slug expression and suggested a new design for potential chemotherapeutic drugs against OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Extratos Vegetais , Sedum , Fatores de Transcrição da Família Snail/metabolismo , Trealose/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Metanol , Neoplasias Bucais/tratamento farmacológico , Invasividade Neoplásica , Extratos Vegetais/farmacologia , Sedum/química , Carcinoma de Células Escamosas de Cabeça e Pescoço
7.
RSC Adv ; 11(58): 36792-36800, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35494387

RESUMO

Recent progress in personalized medicine and gene delivery has created exciting opportunities in therapeutics for central nervous system (CNS) disorders. Despite the interest in gene-based therapies, successful delivery of nucleic acids for treatment of CNS disorders faces major challenges. Here we report the facile synthesis of a novel, biodegradable, microglia-targeting polyester amine (PEA) carrier based on hydrophilic triethylene glycol dimethacrylate (TG) and low-molecular weight polyethylenimine (LMW-PEI). This nanocarrier, TG-branched PEI (TGP), successfully condensed double-stranded DNA into a size smaller than 200 nm. TGP nanoplexes were nontoxic in primary mixed glial cells and showed elevated transfection efficiency compared with PEI-25K and lipofector-EZ. After intrathecal and intracranial administration, PEA nanoplexes delivered genes specifically to microglia in the spinal cord and brain, respectively, proposing TGP as a novel microglia-specific gene delivery nanocarrier. The microglia-specific targeting of the TGP nanocarrier offers a new therapeutic strategy to modulate CNS disorders involving aberrant microglia activation while minimizing off-target side effects.

8.
Molecules ; 24(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623058

RESUMO

Pseudolaric Acid B (PAB), diterpenoid isolated from the root bark of Pseudolarix kaempferi Gordon tree (Pinaceae), exhibits an anti-proliferative and apoptotic activity in various cancer cell lines but to date, the effects of PAB on head and neck cancer (HNC) cell lines remain to be elucidated. In this study, we showed that PAB significantly inhibited the viability and caspase-dependent apoptosis in HN22 cell line. PAB-induced apoptosis is through inducing death receptor 5 (DR5) together with the increase in the expression of cleaved caspase-8. It also inhibited the proliferations and induced apoptosis through DR5 in other three HNC cell lines (HSC3, Ca9.22, and HSC4). Extending our in vitro findings, we found that ethanol extract of Pseudolarix kaempferi (2.5 mg/kg/day) reduced tumor growth in a xenograft model bearing HN22 cell line without any change in body weight. DR5 were also found to be increased in tumors tissue of PAB-treated mice without any apparent histopathological changes in liver or kidney tissues. Taken together, PAB may be a potential lead compound for chemotherapeutic agents against head and neck cancer.


Assuntos
Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Neoplasias de Cabeça e Pescoço/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Diterpenos/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Camundongos , Estrutura Molecular , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Acta Biomater ; 97: 105-115, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31326667

RESUMO

Advances in the field of nanomedicine have led to the development of various gene carriers with desirable cellular responses. However, unfavorable stability and physicochemical properties have hindered their applications in vivo. Therefore, multifunctional, smart nanocarriers with unique properties to overcome such drawbacks are needed. Among them, sugar alcohol-based nanoparticle with abundant surface chemistry, numerous hydroxyl groups, acceptable biocompatibility and biodegradable property are considered as the recent additions to the growing list of non-viral vectors. In this review, we present some of the major advances in our laboratory in developing sugar-based polymers as non-viral gene delivery vectors to treat various diseases. We also discuss some of the open questions in this field. STATEMENT OF SIGNIFICANCE: Recently, the development of sugar alcohol-based polymers conjugated with polyethylenimine (PEI) has attracted tremendous interest as gene delivery vectors. First, the natural backbone of polymers with their numerous hydroxyl groups display a wide range of hyperosmotic properties and can thereby enhance the cellular uptake of genetic materials via receptor-mediated endocytosis. Second, conjugation of a PEI backbone with sugar alcohols via Michael addition contributes to buffering capacity and thereby the proton sponge effect. Last, sugar alcohol based gene delivery systems improves therapeutic efficacy both in vitro and in vivo.


Assuntos
Portadores de Fármacos , Técnicas de Transferência de Genes , Terapia Genética , Nanopartículas , Álcoois Açúcares , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Álcoois Açúcares/química , Álcoois Açúcares/uso terapêutico
10.
Lab Anim Res ; 35: 27, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32257914

RESUMO

TW-37 is a small molecule B cell lymphoma-2 (Bcl-2) homology 3 mimetic with potential anticancer activities. However, the in vivo anti-cancer effect of TW-37 in human oral cancer has not been properly studied yet. Here, we attempted to confirm antitumor activity of TW37 in human oral cancer. TW-37 significantly inhibited cell proliferation and increased the number of dead cells in MC-3 and HSC-3 human oral cancer cell lines. TW-37 enhanced apoptosis of both cell lines evidenced by annexin V/propidium iodide double staining, sub-G1 population analysis and the detection of cleaved poly (ADP-ribose) polymerase and caspase-3. In addition, TW-37 markedly downregulated the expression of Bcl-2 protein, while not affecting Bcl-xL or myeloid cell leukemia-1. In vivo, TW-37 inhibited tumor growth in a nude mice xenograft model without any significant liver and kidney toxicities. Collectively, these data reveal that TW-37 may be a promising small molecule to inhibit human oral cancer.

11.
Adv Exp Med Biol ; 1078: 303-320, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357630

RESUMO

Various commercial vaccines are used for immunization against hepatitis B. However, these immunotherapeutic vaccines require invasive administration, which can induce side effects, and require multiple shots to elicit an immune response, limiting their efficacy. Compared to traditional hepatitis B vaccines, polymer nanoparticles have more advantageous inherent properties as vaccine delivery carriers, providing increased stability of encapsulated antigen, the possibility of single-shot immunotherapy, and the capability of mucosal administration, which allows various routes of vaccination. In this review, we present up-to-date information on the potential of a biodegradable nanoparticle-based delivery system in treating hepatitis B. We also discuss the application of nanoparticles in various vaccines and highlighted strategies for eliciting an appropriate immune response.


Assuntos
Sistemas de Liberação de Medicamentos , Vacinas contra Hepatite B/administração & dosagem , Nanopartículas , Polímeros , Humanos , Vacinação
12.
Curr Pharm Des ; 24(16): 1788-1800, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962332

RESUMO

BACKGROUND: Cancer poses a major public health issue, is linked with high mortality rates across the world, and shows a strong interplay between genetic and environmental factors. To date, common therapeutics, including chemotherapy, immunotherapy, and radiotherapy, have made significant contributions to cancer treatment, although diverse obstacles for achieving the permanent "magic bullet" cure have remained. Recently, various anticancer therapeutic agents designed to overcome the limitations of these conventional cancer treatments have received considerable attention. One of these promising and novel agents is the siRNA delivery system; however, poor cellular uptake and altered siRNA stability in physiological environments have limited its use in clinical trials. Therefore, developing the ideal siRNA delivery system with low cytotoxicity, improved siRNA stability in the body's circulation, and prevention of its rapid clearance from bodily fluids, is rapidly emerging as an innovative therapeutic strategy to combat cancer. Moreover, active targeting using ligand moieties which bind to over-expressed receptors on the surface of cancer cells would enhance the therapeutic efficiency of siRNA. CONCLUSION: In this review, we provide 1) an overview of the non-viral carrier associated with siRNA delivery for cancer treatment, and 2) a description of the five major cancer-targeting ligands.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polímeros/química , RNA Interferente Pequeno/uso terapêutico , Animais , Portadores de Fármacos/química , Humanos , Ligantes , RNA Interferente Pequeno/administração & dosagem
13.
Carbohydr Polym ; 181: 1180-1193, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253947

RESUMO

Carbohydrates, one of the most abundant natural compounds and key participants in many biological processes, are relevant in medical and industrial fields. In comparison with synthetic polymers, carbohydrates are biocompatible and have intrinsic targeting properties, enabling them to interact with cell-surface receptors. Among the different carbohydrates, polysaccharides are naturally occurring biological molecules with tremendous potential for biomedical applications. The physicochemical properties of these polysaccharide based nanoparticles, such as excellent biocompatibility, surface charge to interact with nucleic acids, low toxicity and cost effectiveness make them superior carriers for nanomedicine. In addition to variety of physicochemical properties, polysaccharides allow the great ease of chemical modification which enables the preparation of wide range of nanoparticles. In this review, we present the state-of-the-art information on the potential of polysaccharides-based polymers as non-viral gene delivery vectors in treating various diseases. Then, we discuss the chemical modification and structure/property relationship of carbohydrates.


Assuntos
Técnicas de Transferência de Genes , Açúcares/química , Animais , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos
14.
Breast Cancer ; 21(6): 670-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23371824

RESUMO

BACKGROUND: The aim of this study was to evaluate the toxicity and quality of life (QoL) of breast cancer patients treated with a docetaxel-containing chemotherapeutic regimen and to compare adriamycin and cyclophosphamide (AC) for four cycles followed by docetaxel (D) for four cycles with docetaxel, adriamycin, and cyclophosphamide (TAC) for six cycles without primary granulocyte colony-stimulating factor (G-CSF) prophylaxis. METHODS: Node-positive breast cancer patients who received surgery from three hospitals were included. Subjects received docetaxel-containing chemotherapy and completed a questionnaire on QoL (EORTC QLQ-C30 and QLQ-BR23) at each cycle. Toxicity was assessed using the National Cancer Institute Common Toxicity Criteria. RESULTS: All 78 eligible subjects and 542 cycles were analyzed. The incidence of dose reduction and grade 3 edema was higher in the AC-D group. The incidence of febrile neutropenia was significantly increased in the TAC group (63.4 %) compared to the AC-D group (29.7 %). Grade 3 or 4 anemia was higher in the TAC group, and grade 3 or 4 arthralgia was higher in the AC-D group. There were no significant differences in severe nausea and vomiting, fatigue, neuropathy, and peripheral edema. Baseline quality of life showed no difference between the two groups. The global health status decreased during chemotherapy and recovered to baseline level 3 months after chemotherapy. CONCLUSION: Although the incidence of febrile neutropenia was high without primary G-CSF prophylaxis and was more severe in the TAC group, QoL revealed comparable results in both regimens; therefore, it could be one of the considerations in the choice of treatment strategy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Qualidade de Vida , Taxoides/efeitos adversos , Adulto , Idoso , Anemia/induzido quimicamente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Povo Asiático , Ciclofosfamida/administração & dosagem , Docetaxel , Doxorrubicina/administração & dosagem , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Leucopenia/induzido quimicamente , Pessoa de Meia-Idade , Neutropenia/induzido quimicamente , Taxoides/administração & dosagem , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA