Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(21): 6417-6424, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38710072

RESUMO

The functional properties of complex oxides, including magnetism and ferroelectricity, are closely linked to subtle structural distortions. Ultrafast optical excitations provide the means to manipulate structural features and ultimately to affect the functional properties of complex oxides with picosecond-scale precision. We report that the lattice expansion of multiferroic BiFeO3 following above-bandgap optical excitation leads to distortion of the oxygen octahedral rotation (OOR) pattern. The continuous coupling between OOR and strain was probed using time-resolved X-ray free-electron laser diffraction with femtosecond time resolution. Density functional theory calculations predict a relationship between the OOR and the elastic strain consistent with the experiment, demonstrating a route to employing this approach in a wider range of systems. Ultrafast control of the functional properties of BiFeO3 thin films is enabled by this approach because the OOR phenomena are related to ferroelectricity, and via the Fe-O-Fe bond angles, the superexchange interaction between Fe atoms.

2.
ACS Nano ; 17(19): 18843-18849, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37726260

RESUMO

Dynamical control of thermal transport at the nanoscale provides a time-domain strategy for optimizing thermal management in nanoelectronics, magnetic devices, and thermoelectric devices. However, the rate of change available for thermal switches and regulators is limited to millisecond time scales, calling for a faster modulation speed. Here, time-resolved X-ray diffraction measurements and thermal transport modeling reveal an ultrafast modulation of the interfacial thermal conductance of an FeRh/MgO heterostructure as a result of a structural phase transition driven by optical excitation. Within 90 ps after optical excitation, the interfacial thermal conductance is reduced by a factor of 5 and lasts for a few nanoseconds, in comparison to the value at the equilibrium FeRh/MgO interface. The experimental results combined with thermal transport calculations suggest that the reduced interfacial thermal conductance results from enhanced phonon scattering at the interface where the lattice experiences transient in-plane biaxial stress due to the structural phase transition of FeRh. Our results suggest that optically driven phase transitions can be utilized for ultrafast nanoscale thermal switches for device application.

3.
Nat Mater ; 22(5): 536-537, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138008
4.
Nat Commun ; 13(1): 6598, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329063

RESUMO

The interplay between a multitude of electronic, spin, and lattice degrees of freedom underlies the complex phase diagrams of quantum materials. Layer stacking in van der Waals (vdW) heterostructures is responsible for exotic electronic and magnetic properties, which inspires stacking control of two-dimensional magnetism. Beyond the interplay between stacking order and interlayer magnetism, we discover a spin-shear coupling mechanism in which a subtle shear of the atomic layers can have a profound effect on the intralayer magnetic order in a family of vdW antiferromagnets. Using time-resolved X-ray diffraction and optical linear dichroism measurements, interlayer shear is identified as the primary structural degree of freedom that couples with magnetic order. The recovery times of both shear and magnetic order upon optical excitation diverge at the magnetic ordering temperature with the same critical exponent. The time-dependent Ginzburg-Landau theory shows that this concurrent critical slowing down arises from a linear coupling of the interlayer shear to the magnetic order, which is dictated by the broken mirror symmetry intrinsic to the monoclinic stacking. Our results highlight the importance of interlayer shear in ultrafast control of magnetic order via spin-mechanical coupling.

5.
Nano Lett ; 22(11): 4294-4300, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612522

RESUMO

Optical excitation leads to ultrafast stress generation in the prototypical multiferroic BiFeO3. The time scales of stress generation are set by the dynamics of the population of excited electronic states and the coupling of the electronic configuration to the structure. X-ray free-electron laser diffraction reveals high-wavevector subpicosecond-time scale stress generation following ultraviolet excitation of a BiFeO3 thin film. Stress generation includes a fast component with a 1/e rise time with an upper limit of 300 fs and longer-rise time components extending to 1.5 ps. The contributions of the fast and delayed components vary as a function of optical fluence, with a reduced a fast-component contribution at high fluence. The results provide insight into stress-generation mechanisms linked to the population of excited electrons and point to new directions in the application of nanoscale multiferroics and related ferroic complex oxides. The fast component of the stress indicates that structural parameters and properties of ferroelectric thin film materials can be optically modulated with 3 dB bandwidths of at least 0.5 THz.

6.
Proc Natl Acad Sci U S A ; 119(19): e2118597119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35522708

RESUMO

SignificancePhase transitions, the changes between states of matter with distinct electronic, magnetic, or structural properties, are at the center of condensed matter physics and underlie valuable technologies. First-order phase transitions are intrinsically heterogeneous. When driven by ultrashort excitation, nanoscale phase regions evolve rapidly, which has posed a significant experimental challenge to characterize. The newly developed laser-pumped X-ray nanodiffraction imaging technique reported here has simultaneous 100-ps temporal and 25-nm spatial resolutions. This approach reveals pathways of the nanoscale structural rearrangement upon ultrafast optical excitation, different from those transitions under slowly varying parameters. The spatiotemporally resolved structural characterization provides crucial nanoscopic insights into ultrafast phase transitions and opens opportunities for controlling nanoscale phases on ultrafast time scales.

7.
Phys Rev Lett ; 127(9): 097402, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506196

RESUMO

Optical excitation perturbs the balance of phenomena selecting the tilt orientation of domain walls within ferroelectric thin films. The high carrier density induced in a low-strain BaTiO_{3} thin film by an above-band-gap ultrafast optical pulse changes the tilt angle that 90° a/c domain walls form with respect to the substrate-film interface. The dynamics of the changes are apparent in time-resolved synchrotron x-ray scattering studies of the domain diffuse scattering. Tilting occurs at 298 K, a temperature at which the a/b and a/c domain phases coexist but is absent at 343 K in the better ordered single-phase a/c regime. Phase coexistence at 298 K leads to increased domain-wall charge density, and thus a larger screening effect than in the single-phase regime. The screening mechanism points to new directions for the manipulation of nanoscale ferroelectricity.

8.
Nature ; 592(7854): 376-380, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854251

RESUMO

The collective dynamics of topological structures1-6 are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions3,4 have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage7. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices5,6, and these are promising for ultrafast electric-field control of topological orders. However, little is known about the dynamics underlying the functionality of such complex extended nanostructures. Here, using terahertz-field excitation and femtosecond X-ray diffraction measurements, we observe ultrafast collective polarization dynamics that are unique to polar vortices, with orders-of-magnitude higher frequencies and smaller lateral size than those of experimentally realized magnetic vortices3. A previously unseen tunable mode, hereafter referred to as a vortexon, emerges in the form of transient arrays of nanoscale circular patterns of atomic displacements, which reverse their vorticity on picosecond timescales. Its frequency is considerably reduced (softened) at a critical strain, indicating a condensation (freezing) of structural dynamics. We use first-principles-based atomistic calculations and phase-field modelling to reveal the microscopic atomic arrangements and corroborate the frequencies of the vortex modes. The discovery of subterahertz collective dynamics in polar vortices opens opportunities for electric-field-driven data processing in topological structures with ultrahigh speed and density.

9.
Phys Rev Lett ; 123(4): 045703, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491252

RESUMO

Above-band-gap optical illumination of compressively strained BiFeO_{3} induces a transient reversible transformation from a state of coexisting tilted tetragonal-like and rhombohedral-like phases to an untilted tetragonal-like phase. Time-resolved synchrotron x-ray diffraction reveals that the transformation is induced by an ultrafast optically induced lattice expansion that shifts the relative free energies of the tetragonal-like and rhombohedral-like phases. The transformation proceeds at interfaces between regions of the tetragonal-like phase and regions of a mixture of tilted phases, consistent with the motion of a phase boundary. The optically induced transformation demonstrates that there are new optically driven routes towards nanosecond-scale control of phase transformations in ferroelectrics and multiferroics.

10.
Langmuir ; 34(37): 10828-10836, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30145906

RESUMO

Molecular monolayers that can be reconfigured through the use of external stimuli promise to enable the creation of interfaces with precisely selected dynamically adjustable physical and electronic properties with potential impact ranging from electronics to energy storage. Azobenzene-containing molecular monolayers have multiple stable molecular conformations but face a challenging nanoscale problem associated with understanding the basic mechanisms of reconfiguration. Time-resolved X-ray reflectivity studies show that the reconfiguration of a densely packed rhenium-azobenzene monolayer occurs in a period of many seconds. The degree of reconfiguration from trans to cis forms depends on the integrated UV fluence and has kinetics that are consistent with a mechanism in which the transformation occurs through the nucleation and growth of nanoscale two-dimensional regions of the cis isomer.

11.
Nano Lett ; 18(5): 2780-2786, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29664645

RESUMO

Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions present a significant challenge in quantum device development. We report synchrotron X-ray nanodiffraction measurements combined with dynamical X-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04° and strain on the order of 10-4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.

12.
Phys Rev Lett ; 119(5): 057601, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949700

RESUMO

The nanodomain pattern in ferroelectric-dielectric superlattices transforms to a uniform polarization state under above-band-gap optical excitation. X-ray scattering reveals a disappearance of domain diffuse scattering and an expansion of the lattice. The reappearance of the domain pattern occurs over a period of seconds at room temperature, suggesting a transformation mechanism in which charge carriers in long-lived trap states screen the depolarization field. A Landau-Ginzburg-Devonshire model predicts changes in lattice parameter and a critical carrier concentration for the transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA