Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2021: 6673010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816626

RESUMO

Powdery mildew (PM) is a common fungal disease infecting pepper plants worldwide. Molecular breeding of pepper cultivars with powdery mildew resistance is desirable for the economic improvement of pepper cultivation. In the present study, 188 F5 population derived from AR1 (PM resistant) and TF68 (PM sensitive) parents were subjected to high-throughput genotyping by sequencing (GBS) for the identification of single nucleotide polymorphism (SNP) markers. Further, the identified SNP markers were utilized for the construction of genetic linkage map and QTL analysis. Overall read mapping percentage of 87.29% was achieved in this study with the total length of mapped region ranging from 2,956,730 to 25,537,525 bp. A total of 41,111 polymorphic SNPs were identified, and a final of 1,841 SNPs were filtered for the construction of a linkage map. A total of 12 linkage groups were constructed corresponding to each chromosome with 1,308 SNP markers with the map length of 2506.8 cM. Further, two QTLs such as Pm-2.1 and Pm-5.1 were identified in chromosomes 2 and 5, respectively, for the PM resistance. Overall, the outcomes of the present endeavor can be utilized for the marker-assisted selection of pepper with powdery mildew-resistant trait.


Assuntos
Capsicum/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Genótipo , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Capsicum/microbiologia , Doenças das Plantas/microbiologia
2.
Biomed Res Int ; 2018: 5646213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29546063

RESUMO

Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS) approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP) indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.


Assuntos
Capsicum/genética , Resistência à Doença/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mapeamento Cromossômico , Estudos de Associação Genética , Genômica , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética
3.
Sci Rep ; 8(1): 5188, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581444

RESUMO

The present study deals with genome wide identification of single-nucleotide polymorphism (SNP) markers related to powdery mildew (PM) resistance in two pepper varieties. Capsicum baccatum (PRH1- a PM resistant line) and Capsicum annuum (Saengryeg- a PM susceptible line), were resequenced to develop SNP markers. A total of 6,213,009 and 6,840,889 SNPs for PRH1 and Saengryeg respectively have been discovered. Among the SNPs, majority were classified as homozygous type SNPs, particularly in the resistant line. Moreover, the SNPs were differentially distributed among the chromosomes in both the resistant and susceptible lines. In total, 4,887,031 polymorphic SNP loci were identified between the two lines and 306,871 high-resolution melting (HRM) marker primer sets were designed. In order to understand the SNPs associated with the vital genes involved in diseases resistance and stress associated processes, chromosome-wise gene ontology analysis was performed. The results revealed the occurrence that SNPs related to diseases resistance genes were predominantly distributed in chromosome 4. In addition, 6281 SNPs associated with 46 resistance genes were identified. Among the lines, PRH1 consisted of maximum number of polymorphic SNPs related to NBS-LRR genes. The SNP markers were validated using HRM assay in 45 F4 populations and correlated with the phenotypic disease index.


Assuntos
Ascomicetos/genética , Capsicum/genética , Doenças das Plantas/genética , Sequenciamento Completo do Genoma , Ascomicetos/patogenicidade , Capsicum/microbiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genoma de Planta/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
4.
BMC Plant Biol ; 16(1): 235, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27793102

RESUMO

BACKGROUND: Bacterial wilt (BW) is a widespread plant disease that affects a broad range of dicot and monocot hosts and is particularly harmful for solanaceous plants, such as pepper, tomato, and eggplant. The pathogen responsible for BW is the soil-borne bacterium, Ralstonia solanacearum, which can adapt to diverse temperature conditions and is found in climates ranging from tropical to temperate. Resistance to BW has been detected in some pepper plant lines; however, the genomic loci and alleles that mediate this are poorly studied in this species. RESULTS: We resequenced the pepper cultivars YCM344 and Taean, which are parental recombinant inbred lines (RIL) that display differential resistance phenotypes against BW, with YCM344 being highly resistant to infection with this pathogen. We identified novel single nucleotide polymorphisms (SNPs) and insertions/deletions (Indels) that are only present in both parental lines, as compared to the reference genome and further determined variations that distinguish these two cultivars from one another. We then identified potentially informative SNPs that were found in genes related to those that have been previously associated with disease resistance, such as the R genes and stress response genes. Moreover, via comparative analysis, we identified SNPs located in genomic regions that have homology to known resistance genes in the tomato genomes. CONCLUSIONS: From our SNP profiling in both parental lines, we could identify SNPs that are potentially responsible for BW resistance, and practically, these may be used as markers for assisted breeding schemes using these populations. We predict that our analyses will be valuable for both better understanding the YCM334/Taean-derived populations, as well as for enhancing our knowledge of critical SNPs present in the pepper genome.


Assuntos
Capsicum/genética , Resistência à Doença , Doenças das Plantas/imunologia , Ralstonia solanacearum/fisiologia , Capsicum/imunologia , Capsicum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Ralstonia solanacearum/imunologia
5.
PLoS One ; 10(3): e0120163, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25790283

RESUMO

Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH--developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP--based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS--derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species.


Assuntos
Brassica/genética , Resistência à Doença , Polimorfismo de Nucleotídeo Único , Brassica/classificação , Ontologia Genética , Ligação Genética , Marcadores Genéticos/genética , Genoma de Planta , Homologia de Sequência do Ácido Nucleico
6.
Gene ; 533(2): 494-9, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24125952

RESUMO

Next generation sequencing technologies have proven to be a rapid and cost-effective means to assemble and characterize gene content and identify molecular markers in various organisms. Pepper (Capsicum annuum L., Solanaceae) is a major staple vegetable crop, which is economically important and has worldwide distribution. High-throughput transcriptome profiling of two pepper cultivars, Mandarin and Blackcluster, using 454 GS-FLX pyrosequencing yielded 279,221 and 316,357 sequenced reads with a total 120.44 and 142.54Mb of sequence data (average read length of 431 and 450 nucleotides). These reads resulted from 17,525 and 16,341 'isogroups' and were assembled into 19,388 and 18,057 isotigs, and 22,217 and 13,153 singletons for both the cultivars, respectively. Assembled sequences were annotated functionally based on homology to genes in multiple public databases. Detailed sequence variant analysis identified a total of 9701 and 12,741 potential SNPs which eventually resulted in 1025 and 1059 genotype specific SNPs, for both the varieties, respectively, after examining SNP frequency distribution for each mapped unigenes. These markers for pepper will be highly valuable for marker-assisted breeding and other genetic studies.


Assuntos
Capsicum/classificação , Capsicum/genética , Marcadores Genéticos , Mapeamento Cromossômico/métodos , Perfilação da Expressão Gênica , Biblioteca Gênica , Estudos de Associação Genética , Especiação Genética , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único/fisiologia , Análise de Sequência de DNA , Especificidade da Espécie
7.
Mol Cells ; 36(2): 158-62, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23832764

RESUMO

The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.


Assuntos
Acetiltransferases/genética , Acetiltransferases/metabolismo , Agrobacterium/genética , Alho/genética , Herbicidas/toxicidade , Agrobacterium/metabolismo , Alcanossulfonatos , DNA de Plantas , Ditiotreitol , Resistência a Medicamentos , Alho/metabolismo , Alho/microbiologia , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
8.
Bot Stud ; 54(1): 58, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28510893

RESUMO

BACKGROUND: Pepper, Capsicum annuum L., Solanaceae, is a major staple economically important vegetable crop worldwide. Limited functional genomics resources and whole genome association studies could be substantially improved through the application of molecular approach for the characterization of gene content and identification of molecular markers. The massive parallel pyrosequencing of two pepper varieties, the highly pungent, Saengryeg 211, and the non-pungent, Saengryeg 213, including de novo transcriptome assembly, functional annotation, and in silico discovery of potential molecular markers is described. We performed 454 GS-FLX Titanium sequencing of polyA-selected and normalized cDNA libraries generated from a single pool of transcripts obtained from mature fruits of two pepper varieties. RESULTS: A single 454 pyrosequencing run generated 361,671 and 274,269 reads totaling 164.49 and 124.60 Mb of sequence data (average read length of 454 nucleotides), which assembled into 23,821 and 17,813 isotigs and 18,147 and 15,129 singletons for both varieties, respectively. These reads were organized into 20,352 and 15,781 'isogroups' for both varieties. Assembled sequences were functionally annotated based on homology to genes in multiple public databases and assigned with Gene Ontology (GO) terms. Sequence variants analyses identified a total of 3,766 and 2,431 potential (Simple Sequence Repeat) SSR motifs for microsatellite analysis for both varieties, where trinucleotide was the most common repeat unit (84%), followed by di (9.9%), hexa (4.1%) and pentanucleotide repeats (2.1%). GAA repeat (8.6%) was the most frequent repeat motif, followed by TGG (7.2%), TTC (6.5%), and CAG (6.2%). CONCLUSIONS: High-throughput transcriptome assembly, annotation and large scale of SSR marker discovery has been achieved using next generation sequencing (NGS) of two pepper varieties. These valuable informations for functional genomics resource shall help to further improve the pepper breeding efforts with respect to genetic linkage maps, QTL mapping and marker-assisted trait selection.

9.
Theor Appl Genet ; 118(3): 433-41, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18936906

RESUMO

A novel chimeric gene with a 5' end containing the nearly complete sequence of the coxI gene and a 3' end showing homology with chive orfA501 was isolated by genome walking from two cytoplasm types: CMS-S and CMS-T, both of which induce male-sterility in onion (Allium cepa L.). In addition, the normal active and variant inactive coxI genes were also isolated from onions containing the normal and CMS-S cytoplasms, respectively. The chimeric gene, designated as orf725, was nearly undetectable in normal cytoplasm, and the copy number of the normal coxI gene was significantly reduced in CMS-S cytoplasm. RT-PCR results showed that orf725 was not transcribed in normal cytoplasm. Meanwhile, the normal coxI gene, which is essential for normal mitochondrial function, was not expressed in CMS-S cytoplasm. However, both orf725 and coxI were transcribed in CMS-T cytoplasm. The expression of orf725, a putative male-sterility-inducing gene, was not affected by the presence of nuclear restorer-of-fertility gene(s) in male-fertility segregating populations originating from the cross between a male-sterile plant containing either CMS-T or CMS-S and a male-fertile plant whose genotypes of nuclear restorer gene(s) might be heterozygous. The specific stoichiometry of orf725 and coxI in the mtDNA of the three cytoplasm types was consistent among diverse germplasm. Therefore, a molecular marker based on the relative copy numbers of orf725 and coxI was designed for distinguishing among the three cytoplasm types by one simple PCR. The reliability and applicability of the molecular marker was shown by testing diverse onion germplasm.


Assuntos
Citoplasma/genética , Proteínas Mutantes Quiméricas/genética , Cebolas/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , DNA Mitocondrial , Complexo IV da Cadeia de Transporte de Elétrons/genética , Fertilidade/genética , Marcadores Genéticos , Dados de Sequência Molecular , Cebolas/ultraestrutura , Filogenia , Pólen/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA