Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 1(11): e1500793, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26824059

RESUMO

Photonic systems based on energy-time entanglement have been proposed to test local realism using the Bell inequality. A violation of this inequality normally also certifies security of device-independent quantum key distribution (QKD) so that an attacker cannot eavesdrop or control the system. We show how this security test can be circumvented in energy-time entangled systems when using standard avalanche photodetectors, allowing an attacker to compromise the system without leaving a trace. We reach Bell values up to 3.63 at 97.6% faked detector efficiency using tailored pulses of classical light, which exceeds even the quantum prediction. This is the first demonstration of a violation-faking source that gives both tunable violation and high faked detector efficiency. The implications are severe: the standard Clauser-Horne-Shimony-Holt inequality cannot be used to show device-independent security for energy-time entanglement setups based on Franson's configuration. However, device-independent security can be reestablished, and we conclude by listing a number of improved tests and experimental setups that would protect against all current and future attacks of this type.

2.
J Trop Pediatr ; 60(6): 428-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25113837

RESUMO

OBJECTIVE: Fluid resuscitation is integral to resuscitation guidelines and critical care. However, fluid overload (FO) yields increased morbidity. METHODS: Prospective observational study of Red Cross War Memorial Children's Hospital pediatric intensive care unit admissions (February to March 2013). FO % = (fluid in minus fluid out) [liters]/weight [kg] × 100%. PRIMARY OUTCOMES: FO ≥ 10%, 28 day mortality. RESULTS: Median [interquartile range (IQR)] age: 9.5 (2.0-39.0) months, median (IQR) admission weight: 7.9 (3.6-13.7) kg. Median (IQR) FO with admission weight: 3.5 (2.1-4.9)%; three patients had FO ≥ 10%. The 28 day mortality was 10% (n = 10). Patients who died had higher mean (IQR) FO using admission weight [4.9 (2.9-9.3)% vs. 3.4 (1.9-4.8)%; p = 0.04]. CONCLUSIONS: Low FO ≥ 10% prevalence with 28 day mortality 10%. Higher FO% with admission weight associated with mortality (p = 0.04). We advocate further investigation of FO% as a simple bedside tool.


Assuntos
Líquidos Corporais , Hidratação/efeitos adversos , Unidades de Terapia Intensiva Pediátrica , Ressuscitação/métodos , Desequilíbrio Hidroeletrolítico/etiologia , Pré-Escolar , Estado Terminal , Feminino , Hidratação/mortalidade , Hospitalização , Humanos , Lactente , Mortalidade Infantil , Tempo de Internação , Masculino , Morbidade , Prevalência , Estudos Prospectivos , Fatores de Risco , África do Sul , Resultado do Tratamento , Desequilíbrio Hidroeletrolítico/sangue , Desequilíbrio Hidroeletrolítico/terapia
3.
Phys Rev Lett ; 112(14): 140401, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765923

RESUMO

We report on an experimental test of classical and quantum dimension. We have used a dimension witness that can distinguish between quantum and classical systems of dimensions two, three, and four and performed the experiment for all five cases. The witness we have chosen is a base of semi-device-independent cryptographic and randomness expansion protocols. Therefore, the part of the experiment in which qubits were used is a realization of these protocols. In our work we also present an analytic method for finding the maximum quantum value of the witness along with corresponding measurements and preparations. This method is quite general and can be applied to any linear dimension witness.

4.
Phys Rev Lett ; 113(25): 250403, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25554865

RESUMO

Contextuality is a fundamental property of quantum theory and a critical resource for quantum computation. Here, we experimentally observe the arguably cleanest form of contextuality in quantum theory [A. Cabello et al., Phys. Rev. Lett. 111, 180404 (2013)] by implementing a novel method for performing two sequential measurements on heralded photons. This method opens the door to a variety of fundamental experiments and applications.

5.
Sci Rep ; 3: 2170, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23838749

RESUMO

We report two fundamental experiments on three-level quantum systems (qutrits). The first one tests the simplest task for which quantum mechanics provides an advantage with respect to classical physics. The quantum advantage is certified by the violation of Wright's inequality, the simplest classical inequality violated by quantum mechanics. In the second experiment, we obtain contextual correlations by sequentially measuring pairs of compatible observables on a qutrit, and show the violation of Klyachko et al.'s inequality, the most fundamental noncontextuality inequality violated by qutrits. Our experiment tests exactly Klyachko et al.'s inequality, uses the same measurement procedure for each observable in every context, and implements the sequential measurements in any possible order.

6.
Opt Express ; 17(6): 4485-94, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19293876

RESUMO

Single mode fiber (SMF) birefringence effects have been a limiting factor for a variety of Sagnac applications over longer distanceSMF links. In this report, we present a new concept of the SMF birefringence compensation in a Sagnac interferometric setup, based on a novel polarization control system. For the destructive interference, our control system guarantees a perfect compensation of both the SMF birefringence and imperfect propagation times matching of the setup's components. For the stabilization of the constructive interference, we have applied a fiber stretcher and a simple proportional-integral-derivative (PID) controller. The enclosed experimental data of the setup's visibility confirm validity of our polarization control system. We have also showed that the SMF birefringence model used in a "plug & play" interferometric setup [19], widely cited in the papers on quantum key distribution [11, 12, 13], cannot be applied in SMF Sagnac interferometric setup. However, the SMF birefringence model based on the Kapron equivalence well describes SMF Sagnac.

7.
Opt Express ; 17(2): 1055-63, 2009 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19158923

RESUMO

We report the first Sagnac quantum secret sharing (in three-and four-party implementations) over 1550 nm single mode fiber (SMF) networks, using a single qubit protocol with phase encoding. Our secret sharing experiment has been based on a single qubit protocol, which has opened the door to practical secret sharing implementation over fiber telecom channels and in free-space. The previous quantum secret sharing proposals were based on multiparticle entangled states, difficult in the practical implementation and not scalable. Our experimental data in the three-party implementation show stable (in regards to birefringence drift) quantum secret sharing transmissions at the total Sagnac transmission loop distances of 55-75 km with the quantum bit error rates (QBER) of 2.3-2.4% for the mean photon number micro?= 0.1 and 1.7-2.1% for micro= 0.3. In the four-party case we have achieved quantum secret sharing transmissions at the total Sagnac transmission loop distances of 45-55 km with the quantum bit error rates (QBER) of 3.0-3.7% for the mean photon number micro= 0.1 and 1.8-3.0% for micro?= 0.3. The stability of quantum transmission has been achieved thanks to our new concept for compensation of SMF birefringence effects in Sagnac, based on a polarization control system and a polarization insensitive phase modulator. The measurement results have showed feasibility of quantum secret sharing over telecom fiber networks in Sagnac configuration, using standard fiber telecom components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA