Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurosci Res ; 188: 75-87, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36368461

RESUMO

Panax notoginseng (Chinese ginseng, Sanqi), one of the major ginseng species, has been traditionally used to alleviate different types of chronic pain. The raw P. notoginseng powder is commonly available in China as a non-prescription drug to treat various aliments including arthritic pain. However, strong scientific evidence is needed to illustrate its pain antihypersensitive effects, effective ingredients and mechanism of action. The oral P. notoginseng powder dose-dependently alleviated formalin-induced tonic hyperalgesia, and its total ginsenosides remarkably inhibited neuropathic pain hypersensitivity. Ginsenoside Rb1, the most abundant ginsenoside of P. notoginseng, dose-dependently produced neuropathic pain antihypersensitivity. Conversely, ginsenosides Rg1, Re and notoginseng R1, the other major saponins from P. notoginseng, failed to inhibit formalin-induced tonic pain or mechanical allodynia in neuropathic pain. Ginsenoside Rb1 metabolites ginsenosides Rg3, Compound-K and protopanaxadiol also had similar antineuropathic pain efficacy to ginsenoside Rb1. Additionally, intrathecal ginsenoside Rb1 specifically stimulated dynorphin A expression which was colocalized with microglia but not neurons or astrocytes in the spinal dorsal horn and primary cultured cells. Pretreatment with microglial metabolic inhibitor minocycline, dynorphin A antiserum and specific κ-opioid receptor antagonist GNTI completely blocked Rb1-induced mechanical antiallodynia in neuropathic pain. Furthermore, the specific glucocorticoid receptor (GR) antagonist Dex-21-mesylate (but not GPR30 estrogen receptor antagonist G15) also entirely attenuated ginsenoside Rb1-related antineuropathic pain effects. All these results, for the first time, show that P. notoginseng alleviates neuropathic pain and ginsenoside Rb1 is its principal effective ingredient. Furthermore, ginsenoside Rb1 inhibits neuropathic pain by stimulation of spinal microglial dynorphin A expression following GR activation.


Assuntos
Ginsenosídeos , Neuralgia , Panax notoginseng , Ginsenosídeos/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Dinorfinas/uso terapêutico , Panax notoginseng/metabolismo , Microglia/metabolismo , Pós/metabolismo , Pós/farmacologia , Pós/uso terapêutico , Hiperalgesia/metabolismo , Neuralgia/tratamento farmacológico
2.
Life Sci ; 285: 119996, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597607

RESUMO

AIMS: Dezocine and pentazocine, widely prescribed in China for postoperative pain, were initially considered as mixed agonist/antagonist targeting µ-opioid receptors (MORs) and κ-opioid receptors (KORs). However, dezocine has been revealed to alleviate chronic neuropathic pain through MOR activation and norepinephrine reuptake inhibition (NRI). This study investigated dezocine- and pentazocine-induced antinociception and physical dependence development, compared to the typical MOR-NRI opioid tapentadol. MAIN METHODS: Calcium mobilization assay was conducted to assess the potency of the drugs while hot-plate test was performed to compare the antinociception. Physical dependence development was compared with morphine. KEY FINDINGS: Treatment with dezocine, pentazocine and tapentadol stimulated calcium mobilization in HEK293 cells stably expressed MORs but not KORs, whereas dezocine and pentazocine inhibited KOR activities. Subcutaneously injected dezocine-, tapentadol- and pentazocine-induced antinociception dose-dependently, in hot-plate test. Intrathecally injected MOR antagonist CTAP, norepinephrine depletor 6-OHDA and α2-adrenoceptor (α2-AR) antagonist yohimbine partially antagonized dezocine, pentazocine and tapentadol antinociception. Whereas specific KOR antagonist GNTI did not alter their antinociception, the putative inverse KOR agonist nor-BNI reduced dezocine and pentazocine antinociception. Moreover, combined CTAP and 6-OHDA or yohimbine blocked dezocine and tapentadol antinociception but displayed the same partial inhibition on pentazocine antinociception as CTAP alone. Furthermore, compared to morphine and pentazocine, long-term treatment with dezocine and tapentadol produced much less physical dependence-related withdrawal signs, which were restored by spinal 6-OHDA or yohimbine treatment. SIGNIFICANCE: Our findings illustrated that dezocine and tapentadol, but not pentazocine, exert remarkable antinociception in nociceptive pain with less abuse liability via dual mechanisms of MOR activation and NRI.


Assuntos
Analgésicos Opioides/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dor Nociceptiva/tratamento farmacológico , Pentazocina/farmacologia , Receptores Opioides mu/agonistas , Tapentadol/farmacologia , Tetra-Hidronaftalenos/farmacologia , Inibidores da Captação Adrenérgica/química , Inibidores da Captação Adrenérgica/farmacologia , Analgésicos Opioides/química , Analgésicos Opioides/uso terapêutico , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Agonismo de Drogas , Antagonismo de Drogas , Células HEK293 , Humanos , Camundongos , Pentazocina/química , Pentazocina/uso terapêutico , Receptores Adrenérgicos/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides mu/antagonistas & inibidores , Tapentadol/química , Tapentadol/uso terapêutico , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/uso terapêutico
3.
Brain Behav Immun ; 95: 344-361, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862171

RESUMO

Gabapentinoids are recommended first-line treatments for neuropathic pain. They are neuronal voltage-dependent calcium channel α2δ-1 subunit ligands and have been suggested to attenuate neuropathic pain via interaction with neuronal α2δ-1 subunit. However, the current study revealed their microglial mechanisms underlying antineuropathic pain. Intrathecal injection of gabapentin, pregabalin and mirogabalin rapidly inhibited mechanical allodynia and thermal hyperalgesia, with projected ED50 values of 30.3, 6.2 and 1.5 µg (or 176.9, 38.9 and 7.2 nmol) and Emax values of 66%, 61% and 65% MPE respectively for mechanical allodynia. Intrathecal gabapentinoids stimulated spinal mRNA and protein expression of IL-10 and ß-endorphin (but not dynorphin A) in neuropathic rats with the time point parallel to their inhibition of allodynia, which was observed in microglia but not astrocytes or neurons in spinal dorsal horns by using double immunofluorescence staining. Intrathecal gabapentin alleviated pain hypersensitivity in male/female neuropathic but not male sham rats, whereas it increased expression of spinal IL-10 and ß-endorphin in male/female neuropathic and male sham rats. Treatment with gabapentin, pregabalin and mirogabalin specifically upregulated IL-10 and ß-endorphin mRNA and protein expression in primary spinal microglial but not astrocytic or neuronal cells, with EC50 values of 41.3, 11.5 and 2.5 µM and 34.7, 13.3 and 2.8 µM respectively. Pretreatment with intrathecal microglial metabolic inhibitor minocycline, IL-10 antibody, ß-endorphin antiserum or µ-opioid receptor antagonist CTAP (but not κ- or δ-opioid receptor antagonists) suppressed spinal gabapentinoids-inhibited mechanical allodynia. Immunofluorescence staining exhibited specific α2δ-1 expression in neurons but not microglia or astrocytes in the spinal dorsal horns or cultured primary spinal cells. Thus the results illustrate that gabapentinoids alleviate neuropathic pain through stimulating expression of spinal microglial IL-10 and consequent ß-endorphin.


Assuntos
Gabapentina/farmacologia , Interleucina-10 , Microglia/metabolismo , Neuralgia , beta-Endorfina , Animais , Feminino , Hiperalgesia/tratamento farmacológico , Interleucina-10/metabolismo , Masculino , Neuralgia/tratamento farmacológico , Ratos , Ratos Wistar , Medula Espinal , beta-Endorfina/metabolismo
4.
Eur J Pharm Sci ; 149: 105322, 2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32289662

RESUMO

Opioid analgesics and the α2-adrenergic receptor (α2AR) agonists are found to produce synergistic antinociception when administered in combination. In this study interactions between butorphanol and dexmedetomidine were investigated in the thermal pain and autonomous locomotor activity. Butorphanol and dexmedetomidine were administered subcutaneously alone and in combination in a fixed-dose ratio (3:1) to assess the antinociceptive and sedative responses. Butorphanol produced antinociception in the hot-plate test via three major opioid receptor subtypes, i.e. MORs, KORs and DORs, while in the tail-immersion test the antinociception was produced by MORs and KORs, whereas dexmedetomidine exhibited antinociception by α2ARs in both tests. They exhibited dose- and time-dependent antinociception and inhibition of locomotor activity when administered alone, while their combination displayed enhanced therapeutic effects. Isobolographic analysis revealed that combined butorphanol and dexmedetomidine produced synergistic interactions in the hot-plate, tail-immersion and locomotor activity tests. Furthermore, the analgesic synergy was also approved to be modulated by MORs, KORs, DORs and α2ARs. Hence we concluded from this study that combined butorphanol and dexmedetomidine produced synergistic antinociception that may be helpful in facilitating clinical management of acute nociceptive pain.

5.
Eur J Pharmacol ; 876: 173062, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173379

RESUMO

Dezocine is an opioid analgesic widely used in China, occupying over 45% of the domestic market of opioid analgesics. We have recently demonstrated that dezocine produced mechanical antiallodynia and thermal antihyperalgesia through spinal µ-opioid receptor activation and norepinephrine reuptake inhibition in neuropathic pain. This study further explored the dual µ-opioid receptor and norepinephrine reuptake mechanisms underlying dezocine-induced mechanical antiallodynia in bone cancer pain, compared with tapentadol, the first recognized analgesic in this class. Dezocine and tapentadol, given subcutaneously, exerted profound mechanical antiallodynia in bone cancer pain rats in a dose-dependent manner, yielding similar maximal effects but different potencies: ED50s of 0.6 mg/kg for dezocine and 7.5 mg/kg for tapentadol, respectively. Furthermore, their mechanical antiallodynia was partially blocked by intrathecal injection of the specific µ-opioid receptor antagonist CTAP, but not κ-opioid receptor antagonists GNTI and nor-BNI or δ-opioid receptor antagonist naltrindole. Intrathecal administrations of the specific norepinephrine depletor 6-OHDA (but not the serotonin depletor PCPA) for three consecutive days and single injection of the α-adrenoceptor antagonist phentolamine/α2-adrenoceptor antagonist yohimbine partially blocked dezocine- and tapentadol-induced mechanical antiallodynia. Strikingly, the combination of CTAP and yohimbine nearly completely blocked dezocine- and tapentadol-induced mechanical antiallodynia. Our results illustrate that both dezocine and tapentadol exert mechanical antiallodynia in bone cancer pain through dual mechanisms of µ-opioid receptor activation and norepinephrine reuptake inhibition, and suggest that the µ-opioid receptor and norepinephrine reuptake dual-targeting opioids are effective analgesics in cancer pain.


Assuntos
Analgésicos Opioides/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dor do Câncer/tratamento farmacológico , Hiperalgesia/prevenção & controle , Receptores Opioides mu/metabolismo , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacologia , Tapentadol/farmacologia , Tetra-Hidronaftalenos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Neoplasias Ósseas , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Injeções Espinhais , Ratos , Ratos Sprague-Dawley , Ratos Wistar
6.
Chin J Integr Med ; 26(9): 643-647, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31630362

RESUMO

Opioid drugs are the first line of defense in severe pain but the adverse effects associated with opioids are considered as a serious issue worldwide. Acupuncture/electroacupuncture is a type of Chinese medicine therapy which is an effective analgesic therapy, well documented in animals and human studies. Electroacupuncture stimulation could release endogenous opioid peptides causing analgesia in a variety of pain models. It can be used as an alternative therapy to control the opioid crisis.


Assuntos
Terapia por Acupuntura/métodos , Eletroacupuntura/métodos , Epidemia de Opioides , Manejo da Dor/métodos , Analgesia por Acupuntura/métodos , Animais , Humanos
7.
Eur J Pharmacol ; 857: 172429, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31170381

RESUMO

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a frustrating syndrome. The pathogenesis and state of the art treatment of CP/CPPS are not known. A wide variety of therapies including anti-inflammatories, antibiotics, alpha-blockers, neuropathic pain modulators, and 5α-reductase inhibitors are in practice. These treatment strategies focus on alleviating symptoms in specific domains without treating root-cause and therapeutic outcome is far from satisfactory. We review the literature on current pharmacological treatments for CP/CPPS in detail and suggest future perspectives to modify the treatment strategies. We suggest that introducing novel treatment strategies such as gene editing, and Tregs expressing chimeric receptors may improve the treatment outcomes by inducing immune tolerance and controlling expression of pro-inflammatory cytokines.


Assuntos
Dor Pélvica/terapia , Prostatite/terapia , Doença Crônica , Edição de Genes , Humanos , Masculino , Dor Pélvica/tratamento farmacológico , Dor Pélvica/genética , Prostatite/tratamento farmacológico , Prostatite/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA