Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 179: 117247, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236477

RESUMO

High altitude environment is mainly characterized by low oxygen. Due to persistent hypoxia, nonhealing wounds are common in high-altitude areas. Moreover, Basic fibroblast growth factor (bFGF) is a versatile biologically active substance that has crucial impact on wound healing. Given the limited availability of atmospheric oxygen and reduced blood oxygen saturation in high-altitude area, and the challenge that arises from direct oxygen and bFGF delivery to wounds through the traumatized vascular structure, it necessitates an innovative solution for local and permeable delivery of oxygen and bFGF. In this study, we present a strategy that involves revamping traditional gel-based wound dressings through the incorporation of nanoparticles encapsulating oxygen and bFGF, engineered to facilitate the localized delivery of dissolved oxygen and bFGF to wound surfaces. The prospective evaluation of this delivery technique's therapeutic impacts on epithelial, endothelial and fibroblasts cells can be materialized. Further experiment corroborated these effects on a high-altitude wounds' murine model. Given its biocompatibility, efficacy, and utility, we posit that NOB-Gel exhibits remarkable translational potential for managing and hastening the healing process of an array of clinical wounds, more so for wounds inflicted at high altitudes.


Assuntos
Altitude , Bandagens , Fator 2 de Crescimento de Fibroblastos , Géis , Nanopartículas , Oxigênio , Cicatrização , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Animais , Cicatrização/efeitos dos fármacos , Oxigênio/administração & dosagem , Camundongos , Humanos , Masculino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo
2.
Arch Biochem Biophys ; 758: 110078, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38944139

RESUMO

About 140 million people worldwide live at an altitude above 2500 m. Studies have showed an increase of the incidence of hyperuricemia among plateau populations, but little is known about the possible mechanisms. This study aims to assess the effects of high altitude on hyperuricemia and explore the corresponding mechanisms at the histological, inflammatory and molecular levels. This study finds that intermittent hypobaric hypoxia (IHH) exposure results in an increase of serum uric acid level and a decrease of uric acid clearance rate. Compared with the control group, the IHH group shows significant increases in hemoglobin concentration (HGB) and red blood cell counts (RBC), indicating that high altitude hyperuricemia is associated with polycythemia. This study also shows that IHH exposure induces oxidative stress, which causes the injury of liver and renal structures and functions. Additionally, altered expressions of organic anion transporter 1 (OAT1) and organic cation transporter 1 (OCT1) of kidney have been detected in the IHH exposed rats. The adenosine deaminase (ADA) expression levels and the xanthione oxidase (XOD) and ADA activity of liver of the IHH exposure group have significantly increased compared with those of the control group. Furthermore, the spleen coefficients, IL-2, IL-1ß and IL-8, have seen significant increases among the IHH exposure group. TLR/MyD88/NF-κB pathway is activated in the process of IHH induced inflammatory response in joints. Importantly, these results jointly show that IHH exposure causes hyperuricemia. IHH induced oxidative stress along with liver and kidney injury, unusual expression of the uric acid synthesis/excretion regulator and inflammatory response, thus suggesting a potential mechanism underlying IHH-induced hyperuricemia.


Assuntos
Hiperuricemia , Hipóxia , Rim , Fígado , Estresse Oxidativo , Hiperuricemia/metabolismo , Animais , Masculino , Ratos , Fígado/metabolismo , Fígado/patologia , Hipóxia/metabolismo , Hipóxia/complicações , Rim/metabolismo , Rim/patologia , Altitude , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Ratos Sprague-Dawley , Xantina Oxidase/metabolismo , Doença da Altitude/metabolismo , Doença da Altitude/complicações , Doença da Altitude/fisiopatologia
3.
Apoptosis ; 29(9-10): 1663-1678, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38678130

RESUMO

High-altitude exposure has been linked to cardiac dysfunction. Silent information regulator factor 2-related enzyme 1 (sirtuin 1, SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, plays a crucial role in regulating numerous cardiovascular diseases. However, the relationship between SIRT1 and cardiac dysfunction induced by hypobaric hypoxia (HH) remains unexplored. This study aims to assess the impact of SIRT1 on HH-induced cardiac dysfunction and delve into the underlying mechanisms, both in vivo and in vitro. In this study, we have demonstrated that exposure to HH results in cardiomyocyte injury, along with the downregulation of SIRT1 and mitochondrial dysfunction. Upregulating SIRT1 significantly inhibits mitochondrial fission, improves mitochondrial function, reduces cardiomyocyte injury, and consequently enhances cardiac function in HH-exposed rats. Additionally, HH exposure triggers aberrant expression of mitochondrial fission-regulated proteins, with a decrease in PPARγ coactivator 1 alpha (PGC-1α) and mitochondrial fission factor (MFF) and an increase in mitochondrial fission 1 (FIS1) and dynamin-related protein 1 (DRP1), all of which are mitigated by SIRT1 upregulation. Furthermore, inhibiting PGC-1α diminishes the positive effects of SIRT1 regulation on the expression of DRP1, MFF, and FIS1, as well as mitochondrial fission. These findings demonstrate that SIRT1 alleviates HHinduced cardiac dysfunction by preventing mitochondrial fission through the PGC-1α-DRP1/FIS1/MFF pathway.


Assuntos
Dinaminas , Dinâmica Mitocondrial , Proteínas Mitocondriais , Miócitos Cardíacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Dinaminas/metabolismo , Dinaminas/genética , Ratos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Masculino , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Hipóxia/genética , Ratos Sprague-Dawley , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Apoptose/genética , Altitude
5.
Front Mol Biosci ; 10: 1266243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808523

RESUMO

Hypoxia induced by high altitude can lead to severe neurological dysfunction. Mitophagy is known to play a crucial role in hypoxic nerve injury. However, the regulatory mechanism of mitophagy during this injury remains unclear. Recent studies have highlighted the role of Sestrin2 (SESN2), an evolutionarily conserved stress-inducible protein against acute hypoxia. Our study demonstrated that hypoxia treatment increased SESN2 expression and activated mitophagy in PC12 cells. Furthermore, the knock-out of Sesn2 gene led to a significant increase in mitochondrial membrane potential and ATP concentrations, which protected the PC12 cells from hypoxic injury. Although the AMPK/mTOR pathway was significantly altered under hypoxia, it does not seem to participate in mitophagy regulation. Instead, our data suggest that the mitophagy receptor FUNDC1 plays a vital role in hypoxia-induced mitophagy. Moreover, SESN2 may function through synergistic regulation with other pathways, such as SESN2/AMPK, to mediate cellular adaptation to hypoxia, including the regulation of mitophagy in neuron cells. Therefore, SESN2 plays a critical role in regulating neural cell response to hypoxia. These findings offer valuable insights into the underlying molecular mechanisms governing the regulation of mitophagy under hypoxia and further highlight the potential of SESN2 as a promising therapeutic target for hypoxic nerve injury.

6.
Eur J Med Chem ; 249: 115137, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36696767

RESUMO

GSK-Bz, a TPRV4 antagonist discovered by GSK, displayed potent in vitro TRPV4 inhibition activity, and demonstrated ability to inhibit TRPV4-mediated pulmonary edema in an in vivo rat model. In this study, a series of GSK-Bz derivatives were designed and synthesized based on our previous findings. Compound 2b with cyanocyclobutyl moiety (IC50 = 22.65 nM) was found to be 5.3-fold more potent than GSK-Bz (IC50 = 121.6 nM) in the calcium imaging experiment. Patch-clamp experiments confirmed that compound 2b (IR = 77.1%) also gave significantly improved potency on TRPV4 currents measured at -60 mV. Furthermore, 2b effectively suppressed the permeability response to LPS in HUVEC with negligible cytotoxicity (CC50 > 100 µM). The in vivo protective effects of compounds 2b on acute lung injury were finally assessed in an LPS-induced ALI mice model. Notably, 2b gave better results than HC-067047 against all of the tested indexes (lung W/D ratios, the concentrations of BALF protein and pathological scores), indicating that 2b is a novel and highly potent TRPV4 antagonist which is worth for further development. Currently, evaluation for the drug-like properties of 2b is underway.


Assuntos
Edema Pulmonar , Canais de Cátion TRPV , Camundongos , Ratos , Animais , Canais de Cátion TRPV/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Benzimidazóis/farmacologia
7.
Molecules ; 27(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36080305

RESUMO

Hypoxia at high-altitude leads to osteoporosis. Resveratrol (RES), as an antioxidant, has been reported to promote osteoblastogenesis and suppress osteoclastogenesis. However, the therapeutic effect of RES against osteoporosis induced by high-altitude hypoxia remains unclear. Thus, this study was intended to investigate the potential effects of RES on high-altitude hypoxia-induced osteoporosis both in vivo and in vitro. Male Wistar rats were given RES (400 mg/kg) once daily for nine weeks under hypoxia, while the control was allowed to grow under normoxia. Bone mineral density (BMD), the levels of bone metabolism-related markers, and the changes on a histological level were measured. Bone marrow-derived mesenchymal stem cells (BMSCs) and RAW264.7 were incubated with RES under hypoxia, with a control growing under normoxia, followed by the evaluation of proliferation and differentiation. The results showed that RES inhibited high-altitude hypoxia-induced reduction in BMD, enhanced alkaline phosphatase (ALP), osteocalcin (OCN), calcitonin (CT) and runt-related transcription factor 2 (RUNX2) levels, whereas it reduced cross-linked carboxy-terminal telopeptide of type I collagen (CTX-I) levels and tartrate-resistant acid phosphatase (TRAP) activity in vivo. In addition, RES attenuated histological deteriorations in the femurs. In vitro, RES promoted osteoblastogenesis and mineralization in hypoxia-exposed BMSCs, along with promotion in RUNX2, ALP, OCN and osteopontin (OPN) levels, and inhibited the proliferation and osteoclastogenesis of RAW264.7. The promotion effects of RES on osteoblastogenesis were accompanied by the down-regulation of reactive oxygen species (ROS) and hypoxia inducible factor-1α (HIF-1α) induced by hypoxia. These results demonstrate that RES can alleviate high-altitude hypoxia-induced osteoporosis via promoting osteoblastogenesis by suppressing the ROS/HIF-1α signaling pathway. Thus, we suggest that RES might be a potential treatment with minimal side effects to protect against high-altitude hypoxia-induced osteoporosis.


Assuntos
Doença da Altitude , Osteoporose , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Masculino , Osteocalcina/metabolismo , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA