Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Diabetes ; 16(2): e13484, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37853916

RESUMO

BACKGROUND: To evaluate the glycemic control effects of vhiglitazar (carfloglitazar), a novel peroxisome proliferator-activated receptor pan-agonist, in patients with type 2 diabetes mellitus (T2DM) with metabolic syndrome (MetS) or insulin resistance (IR) using pooled data analysis of two phase III clinical trials. METHODS: Data were collected from two randomized phase III clinical trials in China, comparing chiglitazar to placebo or sitagliptin in T2DM patients. The MetS was defined by the Adult Treatment Panel III MetS criteria, and IR was defined by homeostatic model assessment for insulin resistance (HOMA-IR) ≥4.31 (male) or 4.51 (female). The main end point of this analysis was glycemic control in the different arms within each subgroup. RESULTS: In the MetS subgroup, changes in glycated hemoglobin (HbA1c) from baseline at week 24 in the chiglitazar 32 mg, chiglitazar 48 mg, and sitagliptin 100 mg arms were -1.44%, -1.68%, and -1.37%, respectively; p < .05 was obtained when chiglitazar 48 mg was compared with sitagliptin. In the IR subgroup, the changes in HbA1c were -1.58%, -1.56%, and -1.26% in chiglitazar 32 mg, chiglitazar 48 mg, and sitagliptin 100 mg arms, respectively; p < .05 was obtained when chiglitazar 32 mg was compared with sitaligptin. The two doses of chiglitazar demonstrated a greater reduction in fasting plasma glucose and 2 h postprandial plasma glucose than sitagliptin in the pooled population and in the MetS and IR subgroups. CONCLUSIONS: Chiglitazar shows promising efficacy for glycemic control in patients with T2DM associated with MetS or IR. Further prospective trials are required to validate these findings.


Assuntos
Carbazóis , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Propionatos , Adulto , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Hemoglobinas Glicadas , Glicemia/metabolismo , Controle Glicêmico , Hipoglicemiantes/uso terapêutico , Fosfato de Sitagliptina/uso terapêutico
2.
Mol Med Rep ; 14(2): 1726-32, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27356773

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT­29 colorectal cancer cells, in order to compare aspirin­mediated acetylation of G6PD and its activity between HCT 116 and HT­29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT­29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin­acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH.


Assuntos
Aspirina/farmacologia , Inibidores Enzimáticos/farmacologia , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/metabolismo , Acetilação/efeitos dos fármacos , Aminoácidos , Aspirina/química , Sítios de Ligação , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Glucosefosfato Desidrogenase/química , Células HCT116 , Células HT29 , Humanos , Modelos Moleculares , Conformação Molecular , Via de Pentose Fosfato/efeitos dos fármacos , Ligação Proteica
3.
Tumour Biol ; 37(5): 6007-16, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26596838

RESUMO

Aspirin's ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21(CIP1). Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin's anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin.


Assuntos
Aspirina/farmacologia , Neoplasias do Colo/metabolismo , Proteínas Mutantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias do Colo/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células HCT116 , Células HT29 , Humanos , Lisina/metabolismo , Proteínas Mutantes/química , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Recombinantes , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
4.
Mol Cancer Res ; 14(3): 241-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26685215

RESUMO

UNLABELLED: Data emerging from the past 10 years have consolidated the rationale for investigating the use of aspirin as a chemopreventive agent; however, the mechanisms leading to its anticancer effects are still being elucidated. We hypothesized that aspirin's chemopreventive actions may involve cell-cycle regulation through modulation of the levels or activity of cyclin A2/cyclin-dependent kinase-2 (CDK2). In this study, HT-29 and other diverse panel of cancer cells were used to demonstrate that both aspirin and its primary metabolite, salicylic acid, decreased cyclin A2 (CCNA2) and CDK2 protein and mRNA levels. The downregulatory effect of either drugs on cyclin A2 levels was prevented by pretreatment with lactacystin, an inhibitor of proteasomes, suggesting the involvement of 26S proteasomes. In-vitro kinase assays showed that lysates from cells treated with salicylic acid had lower levels of CDK2 activity. Importantly, three independent experiments revealed that salicylic acid directly binds to CDK2. First, inclusion of salicylic acid in naïve cell lysates, or in recombinant CDK2 preparations, increased the ability of the anti-CDK2 antibody to immunoprecipitate CDK2, suggesting that salicylic acid may directly bind and alter its conformation. Second, in 8-anilino-1-naphthalene-sulfonate (ANS)-CDK2 fluorescence assays, preincubation of CDK2 with salicylic acid dose-dependently quenched the fluorescence due to ANS. Third, computational analysis using molecular docking studies identified Asp145 and Lys33 as the potential sites of salicylic acid interactions with CDK2. These results demonstrate that aspirin and salicylic acid downregulate cyclin A2/CDK2 proteins in multiple cancer cell lines, suggesting a novel target and mechanism of action in chemoprevention. IMPLICATIONS: Biochemical and structural studies indicate that the antiproliferative actions of aspirin are mediated through cyclin A2/CDK2.


Assuntos
Aspirina/farmacologia , Ciclina A2/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Neoplasias/prevenção & controle , Ácido Salicílico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina A2/genética , Quinase 2 Dependente de Ciclina/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Células MCF-7 , Modelos Moleculares , Simulação de Acoplamento Molecular , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica
5.
Tumour Biol ; 37(2): 1727-38, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26314861

RESUMO

Epidemiological studies have demonstrated a significant correlation between regular aspirin use and reduced colon cancer incidence and mortality; however, the pathways by which it exerts its anti-cancer effects are still not fully explored. We hypothesized that aspirin's anti-cancer effect may occur through downregulation of c-Myc gene expression. Here, we demonstrate that aspirin and its primary metabolite, salicylic acid, decrease the c-Myc protein levels in human HCT-116 colon and in few other cancer cell lines. In total cell lysates, both drugs decreased the levels of c-Myc in a concentration-dependent fashion. Greater inhibition was observed in the nucleus than the cytoplasm, and immunofluorescence studies confirmed these observations. Pretreatment of cells with lactacystin, a proteasome inhibitor, partially prevented the downregulatory effect of both aspirin and salicylic acid, suggesting that 26S proteasomal pathway is involved. Both drugs failed to decrease exogenously expressed DDK-tagged c-Myc protein levels; however, under the same conditions, the endogenous c-Myc protein levels were downregulated. Northern blot analysis showed that both drugs caused a decrease in c-Myc mRNA levels in a concentration-dependent fashion. High-performance liquid chromatography (HPLC) analysis showed that aspirin taken up by cells was rapidly metabolized to salicylic acid, suggesting that aspirin's inhibitory effect on c-Myc may occur through formation of salicylic acid. Our result suggests that salicylic acid regulates c-Myc level at both transcriptional and post-transcription levels. Inhibition of c-Myc may represent an important pathway by which aspirin exerts its anti-cancer effect and decrease the occurrence of cancer in epithelial tissues.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/prevenção & controle , Proteínas Proto-Oncogênicas c-myc/biossíntese , Salicilatos/farmacologia , Northern Blotting , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioprevenção , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA