Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 5191871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017458

RESUMO

In this day and age, the necessities for route and situating exactness are getting ever more elevated. The global positioning and navigation system (GPS) can give high-accuracy and long haul route and situating data. But it largely depends on the external environment and is susceptible to environmental disturbances. As a result, the number of visible stars is insufficient, and even placement fails. The research on node positioning technology is of great significance to the research of wireless sensor networks, and node positioning technology is one of the important technologies in wireless sensor networks. Therefore, this paper will introduce the relevant algorithms and technologies of positioning in detail. The purpose of this text is to research how to analyze and research based on Internet of things (IoT) satellite navigation and positioning technology. And the wireless sensor network is described. The two simulation results have showed that, with the positioning technology proposed in this paper, the average positioning error of the anchor node can be kept a small constant regardless of the conditions of different packet sending intervals, changing moving rates, or increasing the transmission power and changing distance. The average positioning error provided in this paper has been kept at about 0.80 m, and the positioning accuracy is high, which is naturally newer and better than the Ssu positioning technology.

2.
Hortic Res ; 8(1): 181, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465755

RESUMO

Overcoming short-day-dependent tuberization to adapt to long-day conditions is critical for the widespread geographical success of potato. The genetic pathways of photoperiodic tuberization are similar to those of photoperiodic flowering. DNA methylation plays an important role in photoperiodic flowering. However, little is known about how DNA methylation affects photoperiodic tuberization in potato. Here, we verified the effect of a DNA methylation inhibitor on photoperiodic tuberization and compared the DNA methylation levels and differentially methylated genes (DMGs) in the photoperiodic tuberization process between photoperiod-sensitive and photoperiod-insensitive genotypes, aiming to dissect the role of DNA methylation in the photoperiodic tuberization of potato. We found that a DNA methylation inhibitor could promote tuber initiation in strict short-day genotypes. Whole-genome DNA methylation sequencing showed that the photoperiod-sensitive and photoperiod-insensitive genotypes had distinct DNA methylation modes in which few differentially methylated genes were shared. Transcriptome analysis confirmed that the DNA methylation inhibitor regulated the expression of the key genes involved in the photoperiod and GA pathways to promote tuber initiation in the photoperiod-sensitive genotype. Comparison of the DNA methylation levels and transcriptome levels identified 52 candidate genes regulated by DNA methylation that were predicted to be involved in photoperiodic tuberization. Our findings provide a new perspective for understanding the relationship between photoperiod-dependent and GA-regulated tuberization. Uncovering the epigenomic signatures of these pathways will greatly enhance potato breeding for adaptation to a wide range of environments.

3.
Environ Sci Pollut Res Int ; 27(25): 31686-31698, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32500491

RESUMO

Remediation of gold tailings is often difficult due to their extremely barren nature and highly heavy metal concentrations. Returning green manure and applying sewage sludge compost have the beneficial effects of providing nutrients and improving the soil environment. The effects of green manure plants, alfalfa (Medicago sativa L.), ryegrass (Lolium perenne Linn.), and tall fescue (Festuca arundinacea), returning in situ on nutrients, bioavailability of trace metals, and community structure of microorganism in gold tailings amended with 0%, 5%, and 10% (weight/weight) sewage sludge compost on the top 4 cm of tailings (SSC-5, SSC-10) were investigated in a pot experiment. The results showed that the plant biomass and microbial biomass carbon in tailings significantly increased in the treatments with sewage sludge compost. The available N and available P and the availability of Zn decreased markedly with the returning of alfalfa and ryegrass. Moreover, through high-throughput sequencing, it was found that the returning of alfalfa had positive effects on the bacterial community richness but a negative impact on the fungal community richness. The microbial community diversity was reduced in the treatment without sewage sludge compost amendment and with alfalfa returning. However, the microbial community diversity was enriched in the treatment of alfalfa returning with sewage sludge compost. In each plant species, 9 dominant bacterial phyla and 10 dominant fungi phyla could be detected. Returning alfalfa green manure and applying sewage sludge compost led to a relative increase in the abundance of Proteobacteria and Ascomycota. These results demonstrated that returning alfalfa and applying sewage sludge compost could be effective in the ecological restoration of gold tailings.


Assuntos
Compostagem , Metais Pesados , Poluentes do Solo/análise , Ouro , Esterco , Esgotos , Solo
4.
Int J Phytoremediation ; 19(8): 739-745, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28537795

RESUMO

A greenhouse experiment was conducted to investigate the effects of the arbuscular mycorrhizal fungus Funneliformis mosseae on three parameters: Pb, Zn, Cu and Cd accumulation, translocation and plant growth in perennial ryegrass (Lolium perenne), tall fescue (Festuca arundinacea), showy stonecrop (Hylotelephium spectabile) and Purple Heart (Tradescantia pallida). The purpose of this work is to enhance site-specific phytostabilization of lead/zinc mine tailings using native plant species. The results showed that mycorrhizal fungi inoculation significantly increased plant biomass of F. arundinacea, H. spectabile and T. pallida. The Pb, Zn, Cu and Cd concentrations in roots were higher than those in shoots both with and without mycorrhizae, with the exception of the Zn concentration in H. spectabile. Mycorrhizae generally increased metal concentrations in roots and decreased metal concentrations in shoots of L. perenne and F. arundinacea. In addition, it was found that the majority of the bioconcentration and translocation factors were lower than 1 and mycorrhizal fungi inoculation further reduced these values. These results suggest that appropriate plant species inoculated with mycorrhiza might be a potential approach to revegetating mine tailing sites and that H. spectabile is an appropriate plant for phytostabilization of Pb/Zn tailings in northern China due to its higher biomass production and lower metal accumulation in shoots.


Assuntos
Chumbo/metabolismo , Micorrizas , Poluentes do Solo/metabolismo , Zinco/metabolismo , Biodegradação Ambiental , China , Raízes de Plantas , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA