Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Hazard Mater ; 469: 133912, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447366

RESUMO

Graphene and zero-valent-iron based nanohybrid (rGO-nZVI NH) with oxidant H2O2 can remove perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) through adsorption-degradation in a controlled aquatic environment. In this study, we evaluated how and to what extent different environmental and operational parameters, such as initial PFAS concentration, H2O2 dose, pH, ionic strength, and natural organic matter (NOM), influenced the removal of PFOS and PFOA by rGO-nZVI. With the increase in initial PFAS concentration (from 0.4 to 50 ppm), pH (3 to 9), ionic strength (0 to 100 mM), and NOM (0 to 10 ppm), PFOS removal reduced by 20%, 30%, 2%, and 6%, respectively, while PFOA removal reduced by 54%, 76%, 11%, and 33% respectively. In contrast, PFOS and PFOA removal increased by 10% and 41%, respectively, with the increase in H2O2 (from 0 to 1 mM). Overall, the effect of changes in environmental and operational parameters was more pronounced for PFOA than PFOS. Mechanistically, •OH radical generation and availability showed a profound effect on PFOA removal. Also, the electrostatic interaction between rGO-nZVI NH and deprotonated PFAS compounds was another key factor for removal. Most importantly, our study confirms that rGO-nZVI in the presence of H2O2 can degrade both PFOS and PFOA to some extent by identifying the important by-products such as acetate, formate, and fluoride.

2.
Int J Hyg Environ Health ; 257: 114340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422602

RESUMO

BACKGROUND: Electronic waste (e-waste) recycling activities release toxic metals, which pose substantial hazard to the environment and human health. We evaluated metal concentrations in biological and environmental samples, and examined the associations between biological lead (Pb), cadmium (Cd), and mercury (Hg) with soil and dust metals, and other possible determinants, among populations exposed and non-exposed to e-waste in Bangladesh. METHODS: A total of 199 e-waste workers and 104 non-exposed individuals were recruited. We measured blood Pb (BPb) and Cd (BCd) concentrations and total Hg (THg) from hair samples. Data were collected on occupational, and behavioral factors. We fitted an elastic net regression (ENET) to model the relationship between a set of influencing factors and metals as outcome variables while controlling for potential covariates. RESULTS: The median concentrations of BPb (11.89 µg/dL) and BCd (1.04 µg/L) among exposed workers were higher than those of non-exposed workers (BPb: 3.63 µg/dL and BCd: 0.83 µg/L respectively). A 100 ppm increment in soil Pb level was associated with an increase in ln-Pb (transformed) in blood (ß = 0.002; 95% CI = 0.00, 0.02). Similarly, ln-BCd level increased (ß = 0.02; 95% CI = 0.001, 0.07) with every ppm increase in dust Cd level. The number of years worked in e-waste activities was associated with elevated ln-BPb (ß = 0.01; 95% CI = 0.01, 0.02) and ln-BCd levels (ß = 0.003; 95% CI = 0.00, 0.05). Smoking significantly contributed to elevated levels of ln-BCd (ß = 0.46; 95% CI = 0.43, 0.73). An increment of 100 kg of e-waste handling per week led to an increase in ln-BPb levels (ß = 0.002; 95% CI = 0.00, 0.01), while respondents knowledge about adverse impact on e-waste reduced the ln-BPb level (ß = -0.14; 95% CI = -0.31, -0.03). Fish consumption frequency had a positive association with THg in hair. CONCLUSIONS: Our data show the need for workplace controls to reduce exposure to Pb and Cd with a broader view of exposure source taken.


Assuntos
Resíduo Eletrônico , Mercúrio , Humanos , Cádmio , Chumbo , Poeira/análise , Bangladesh , Reciclagem , Cabelo/química
3.
J Chem Inf Model ; 63(23): 7299-7319, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37981739

RESUMO

Per and polyfluoroalkyl substances (PFAS) present a unique challenge to remediation techniques because their strong carbon-fluorine bonds make them difficult to degrade. This review explores the use of in silico enzymatic design as a potential PFAS degradation technique. The scope of the enzymes included is based on currently known PFAS degradation techniques, including chemical redox systems that have been studied for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) defluorination, such as those that incorporate hydrated electrons, sulfate, peroxide, and metal catalysts. Bioremediation techniques are also discussed, namely the laccase and horseradish peroxidase systems. The redox potential of known reactants and enzymatic radicals/metal-complexes are then considered and compared to potential enzymes for degrading PFAS. The molecular structure and reaction cycle of prospective enzymes are explored. Current knowledge and techniques of enzyme design, particularly radical-generating enzymes, and application are also discussed. Finally, potential routes for bioengineering enzymes to enable or enhance PFAS remediation are considered as well as the future outlook for computational exploration of enzymatic in situ bioremediation routes for these highly persistent and globally distributed contaminants.


Assuntos
Fluorocarbonos , Estudos Prospectivos , Caprilatos , Peróxidos , Elétrons
4.
Membranes (Basel) ; 13(2)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36837646

RESUMO

Pressure-based membrane processes represent excellent water resource recovery prospects from industrial waste streams. In contrast with conventional pretreatment technologies, studies have shown that membrane pretreatment applications, such as microfiltration (MF), are more cost-effective and improve the results of the overall treatment processes. Hence, enhancing rejection efficiency of MF will enhance the performance of any downstream treatment processes. In this study, 0.45 µm cellulose acetate (CA) microfiltration membranes were modified by vacuum filtration-assisted layer-by-layer deposition of bilayers composed of negatively charged graphene oxide (GO) and positively charged polyethyleneimine (PEI). The performance of 1-, 2-, and 4-bilayer GO-PEI-modified membranes were investigated for their dye-rejection of anionic eriochrome black T (EBT) dye and cationic methylene blue (MB) dye in a cross-flow membrane module. As the number of bilayers on the membrane increased, the membrane thicknesses increased, and the deionized (DI) water flux through the membranes decreased from 4877 LMH/bar for the control (no bilayer) membrane to 2890 LMH/bar for the 4-bilayer membrane. Conversely, the dye-rejection performance of the modified membranes increased as increasing bilayers of GO-PEI deposited on the membranes. The anionic EBT dye saw superior rejection (~90% rejection) compared to the cationic MB dye (~80% rejection), which can be attributable to the electrostatic repulsion between the negatively charged GO surface and anionic EBT dye. After 50% recovery of the saline and dye-laden feed water, there was an observed drop in DI water fluxes of ~40-41% and 36%, respectively. There was also a slight increase in EBT dye-rejection during the composite feed-water experiments, attributed to the precipitation of salts on the membrane feed side or pore spaces, which subsequently reduce the membrane pore sizes.

5.
JMIR Res Protoc ; 11(8): e38201, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35972788

RESUMO

BACKGROUND: e-Waste is a rapidly growing waste stream worldwide, and Bangladesh is a hub of e-waste handling. Informal e-waste recycling operations involve crude methods for dismantling, repairing, sorting, and recycling electronic goods with bare hands and without personal health protections. Direct inhalation or dermal exposure to toxicants during informal recycling is common. Evidence suggests that e-waste-derived toxicants pollute the terrestrial ecosystem and have been linked with adverse health effects. However, e-waste recycling-related occupational health hazards have not been adequately explored in the context of Bangladesh. OBJECTIVE: Our study aims to expand the current understanding of exposure to e-waste. This study will measure the metal concentrations in biological and environmental samples and evaluate the relationship between heavy metals and the biochemical systems of the e-waste workers. METHODS: The study uses a cross-sectional study design consisting of an exposed site and a nonexposed control site. The trained team collected information on individual exposures, detailed work and medical history, and biological samples (blood, urine, and hair) from each subject. This study will measure heavy metal levels (lead, cadmium, and mercury) and biochemical parameters (hematological, hormonal, renal, and others) from the biological samples with reported physical function as outcomes of interest. In addition, we also collected soil and dust samples from both exposed and nonexposed control sites to measure the health risk. All the environmental samples will be analyzed using inductively coupled plasma mass spectrometer to determine metal concentrations. We will also conduct a qualitative investigation for a deeper understanding of the e-waste management system in Bangladesh. RESULTS: The protocol has been approved by the Institutional Review Boards of the International Centre for Diarrheal Disease Research, Bangladesh, and The University of Queensland's Human Behavioral Ethics Committee. Informed written consent was obtained from all participants. We recruited 199 workers from the e-waste sites with at least 5 years of exposure and 104 control subjects with no industrial or e-waste exposure. Sample analysis is estimated to be completed in 2022. CONCLUSIONS: Although many studies have identified potential adverse health outcomes from exposure to e-waste, there is a lack of published epidemiological research in Bangladesh. Research in this field is particularly pressing in the context of the current e-waste trend and the need to deepen the understanding of exposures and outcomes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/38201.

6.
Environ Sci Technol ; 56(1): 512-524, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34931813

RESUMO

Single nanomaterials and nanohybrids (NHs) can inhibit microbial processes in wastewater treatment, especially nitrification. While existing studies focus on short-term and acute exposures of single nanomaterials on wastewater microbial community growth and function, long-term, low-exposure, and emerging NHs need to be examined. These NHs have distinctly different physicochemical properties than their parent nanomaterials and, therefore, may exert previously unknown effects onto wastewater microbial communities. This study systematically investigated long-term [∼6 solid residence time [(SRT)] exposure effects of a widely used carbon-metal NH (rGO-nZVI = 1:2 and 1:0.2, mass ratio) and compared these effects to their single-parent nanomaterials (i.e., rGO and nZVI) in nitrifying sequencing batch reactors. nZVI and NH-dosed reactors showed relatively unaffected microbial communities compared to control, whereas rGO showed a significantly different (p = 0.022) and less diverse community. nZVI promoted a diverse community and significantly higher (p < 0.05) biomass growth under steady-state conditions. While long-term chronic exposure (10 mg·L-1) of single nanomaterials and NHs had limited impact on long-term nutrient recovery, functionally, the reactors dosed with higher iron content, that is, nZVI and rGO-nZVI (1:2), promoted faster NH4+-N removal due to higher biomass growth and upregulation of amoA genes at the transcript level, respectively. The transmission electron microscopy images and scanning electron microscopy─energy-dispersive X-ray spectroscopy analysis revealed high incorporation of iron in nZVI-dosed biomass, which promoted higher cellular growth and a diverse community. Overall, this study shows that NHs have unique effects on microbial community growth and function that cannot be predicted from parent materials alone.


Assuntos
Microbiota , Nanoestruturas , Amônia/metabolismo , Reatores Biológicos , Grafite , Nitrificação , Nitritos/metabolismo , Oxirredução , Águas Residuárias
7.
Lancet Planet Health ; 5(12): e905-e920, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34895498

RESUMO

Electronic waste (e-waste) contains numerous chemicals harmful to human and ecological health. To update a 2013 review assessing adverse human health consequences of exposure to e-waste, we systematically reviewed studies reporting effects on humans related to e-waste exposure. We searched EMBASE, PsycNET, Web of Science, CINAHL, and PubMed for articles published between Dec 18, 2012, and Jan 28, 2020, restricting our search to publications in English. Of the 5645 records identified, we included 70 studies that met the preset criteria. People living in e-waste exposed regions had significantly elevated levels of heavy metals and persistent organic pollutants. Children and pregnant women were especially susceptible during the critical periods of exposure that detrimentally affect diverse biological systems and organs. Elevated toxic chemicals negatively impact on neonatal growth indices and hormone level alterations in e-waste exposed populations. We recorded possible connections between chronic exposure to e-waste and DNA lesions, telomere attrition, inhibited vaccine responsiveness, elevated oxidative stress, and altered immune function. The existence of various toxic chemicals in e-waste recycling areas impose plausible adverse health outcomes. Novel cost-effective methods for safe recycling operations need to be employed in e-waste sites to ensure the health and safety of vulnerable populations.


Assuntos
Resíduo Eletrônico , Metais Pesados , Adulto , Criança , Resíduo Eletrônico/análise , Resíduo Eletrônico/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Feminino , Humanos , Recém-Nascido , Masculino , Metais Pesados/análise , Metais Pesados/toxicidade , Gravidez , Reciclagem
8.
ACS Omega ; 5(50): 32697-32705, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33376907

RESUMO

Nano-enhanced dialytic fluid purification is an evolution of biomedical dialysis that has been proposed as a novel method for applying nanomaterials in water treatment. Using nanosized hexagonal birnessite (δ-MnO2) in a simplified dialytic system, we demonstrate herein an almost complete removal (98%) of Pb(II) within 3 h of treatment while monitoring environmental variables pH and Eh (redox potential). A mathematical model of the purification process is constructed in COMSOL Multiphysics to demonstrate how nanoadsorption using free-flowing nanoparticles in a dialytic system can be studied theoretically using computational fluid dynamics (CFD). The CFD model closely agrees with experimental results, estimating a 95% removal over 3 h of treatment and suggesting an 18% consumption of available adsorbent capacity. Additional insights into the progress and mechanisms of the adsorption process are also revealed. Finally, the nanoenhanced model is compared against standard dialysis absent of nanomaterials using COMSOL, and key differences in removal efficiency are highlighted. Results indicate that nanoenhanced dialysis can attain almost complete removal in 3 h of treatment or reach the same removal goal as standard dialysis in less than two-third of the treatment time.

9.
Sci Total Environ ; 720: 137480, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32146393

RESUMO

Silicone (polydimethylsiloxane or PDMS) wristbands and cotton T-shirts were used to assess the exposure of e-waste recyclers in Dhaka, Bangladesh to polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), dechlorane plus (DPs), and organophosphate esters (OPEs). The median surface-normalized uptake rates of PBDEs, NBFRs, DPs, and OPEs were 170, 8.5, 4.8, and 270 ng/dm2/h for wristbands and 5.4, 2.0, 0.94, and 23 ng/dm2/h for T-shirts, respectively. Concentrations of Tris(2-chloroethyl) phosphate (TCEP), Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), Tri-m-cresyl phosphate (TmCP), Bis(2-ethlyhexyl) tetrabromophthalate (BEH-TEBP), and Dechlorane plus (DPs) in wristbands were significantly correlated with those in T-shirts. Wristbands accumulated ~7 times more mass than T-shirts, especially of compounds expected to be mainly in the gas phase. We introduce the silicone "sandwich" method to approximate the easily releasable fraction (ERF) from T-shirts, hypothesized to be related to dermal exposure. ERFs varied from 6 to 75% of total chemical accumulated by T-shirts and were significantly negatively correlated with compounds' octanol-air partition coefficient (log Koa). The median daily exposure doses via dermal transfer from the front of the T-shirt to the front body trunk were 0.32, 0.13, 0.11, and 9.1 ng/kg-BW/day for PBDEs, NBFRs, DPs, and OPEs, respectively. The evidence of e-waste recycler exposure to flame retardants in this low income country, lacking protective personal equipment, calls for measures to minimize their exposure and for chemical management regulations to consider exposures to chemicals in waste products.


Assuntos
Resíduo Eletrônico , Bangladesh , Monitoramento Ambiental , Ésteres , Retardadores de Chama , Éteres Difenil Halogenados , Organofosfatos , Silicones
10.
Arch Oral Biol ; 112: 104682, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32126356

RESUMO

OBJECTIVE: The aim of this study was to determine the heterogeneity in chemical composition of bovine enamel using atom probe tomography, and thereby evaluate the suitability of bovine enamel as a substitute for human enamel in in vitro dental research. DESIGN: Enamel samples from extracted bovine incisor teeth were first sectioned using a diamond saw and then milled into needle-like samples (<100 nm diameter) by focused ion beam (FIB) coupled with a scanning electron microscope (SEM). These samples were analyzed in the atom probe to acquire three-dimensional (3D) images and quantify the atomic chemistry and distribution in bovine enamel. RESULTS: For the first time, the atomic-level composition and clustering of major constituents and impurities within bovine enamel were determined and imaged. We discovered that the chemical composition of bovine enamel is spatially inhomogeneous at the atomic scale. The average bulk Ca/P ratio, ∼1.4, was in agreement with previously reported literature values from alternative conventional methods. When assessed locally at the atomic scale, the Ca/P ratio varied between 1.1 and 2.03. We also discovered that the Mg impurities were significantly segregated throughout the enamel, and such clustering influenced the variation of Ca/P ratios. The increase in Mg concentrations, near the Mg clusters, correlated with increased Ca and decreased P concentrations. CONCLUSION: The presented findings of variability in local composition should be taken into account when interpreting dental research results from bovine enamel.


Assuntos
Esmalte Dentário/ultraestrutura , Tomografia , Animais , Bovinos , Incisivo , Microscopia Eletrônica de Varredura
11.
J Hazard Mater ; 392: 122335, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092658

RESUMO

Stormwater conveys natural and engineered (nano)-particles, like any other pollutants, from urban areas to water resources. Thus, the use of stormwater green infrastructures (SGI), which infiltrate and treat stormwater, can potentially limit the spread of engineered (nano)-particles in the environment. However, the concentration of engineered (nano)-particles in soil or biofilter media used in SGI has not been measured due to difficulties in distinguishing natural vs. engineered (nano)-particles. This study reports, for the first time, the concentration and size distribution of TiO2 engineered (nano)-particles in soils collected from SGI. The concentrations of TiO2 engineered (nano)-particles were determined by mass balance calculations based on shifts in elemental concentration ratios, i.e., Ti to Nb, Ti to Ta, and Ti to Al in SGI soils relative to natural background elemental ratios. The concentrations of TiO2 engineered (nano)-particles in SGI soils varied between 550 ± 13 and 1800 ± 200 mg kg-1. A small fraction of TiO2 engineered (nano)-particles could be extracted by ultrapure water (UPW) and Na4P2O7; however, the concentration of TiO2 engineered (nano)-particles was higher in the Na4P2O7-extracted suspensions than in UPW-extracted suspensions. The concentration of TiO2 in the nanosize range increased with the increase in extractant (Na4P2O7) volume to soil mass ratio due to the increased disaggregation of soil heteroaggregates. The size distribution of TiO2 engineered (nano)-particles in the < 450 nm Na4P2O7-extracted suspension from one of the SGI soils was determined by asymmetrical flow-field flow fractionation coupled to inductively coupled plasma-mass spectrometer, and was found to vary in the range of 25-200 nm with a modal size of 50 nm. These results demonstrated that the increase in the Ti to natural tracers (e.g., Nb, Ta, and Al) elemental ratios in the SGI soil relative to bulk soil can be used to estimate the concentration of TiO2 engineered (nano)-particles in SGI.

12.
Chemosphere ; 248: 126070, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32028165

RESUMO

Urban runoff conveys contaminants including titanium dioxide (TiO2), widely used as engineered nanoparticles (e.g., 1-100 nm) and pigments (e.g., 100-300 nm) in the urban environment, to receiving surface waters. Yet, the concentrations of TiO2 engineered particles (e.g., engineered nanoparticles and pigments) in urban runoff has not been determined due to difficulties in distinguishing natural from engineered TiO2 particles in environmental matrices. The present study examines the occurrence and estimates the concentrations of TiO2 engineered particles in urban runoff under wet- and dry-weather conditions. Urban runoff was collected from two bridges in Columbia, South Carolina, USA under wet-weather conditions and from the Ballona Creek and Los Angeles (LA) River in Los Angeles, California, USA under dry-weather conditions. The concentrations of TiO2 engineered particles were determined by mass balance calculations based on shifts in elemental concentration ratios in urban runoff relative to natural background elemental ratios. Elemental ratios of Ti to Nb in urban runoff were higher than the natural background ratios, indicating Ti contamination. The occurrence of TiO2 engineered particles was further confirmed by transmission electron microscopy coupled with energy dispersive spectroscopy. The concentration of TiO2 engineered particles in urban runoff was estimated to be in the range of 5-150 µg L-1. Therefore, this study identifies urban runoff as a previously unaccounted source of TiO2 engineered particle release to the environment, which should be included in engineered nanoparticle fate modeling studies and in estimating environmental release of engineered nanoparticles.


Assuntos
Monitoramento Ambiental/métodos , Nanopartículas/análise , Rios/química , Titânio/análise , Poluentes Químicos da Água/análise , California , Cidades , Monitoramento Ambiental/instrumentação , South Carolina , Tempo (Meteorologia)
13.
Environ Sci Technol ; 53(13): 7265-7287, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31199142

RESUMO

Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from "less efficient" single-component nanomaterials toward "superior-performance", next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon-metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy-water-environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.


Assuntos
Grafite , Nanoestruturas , Nanotubos de Carbono , Metais , Nanotecnologia
14.
Environ Sci Technol ; 53(8): 4161-4172, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884220

RESUMO

We report the comparative aggregation behavior of three emerging inorganic 2D nanomaterials (NMs): MoS2, WS2, and h-BN in aquatic media. Their aqueous dispersions were subjected to aggregation under varying concentrations of monovalent (NaCl) and divalent (CaCl2) electrolytes. Moreover, Suwanee River Natural Organic Matter (SRNOM) has been used to analyze the effect of natural macromolecules on 2D NM aggregation. An increase in electrolyte concentration resulted in electrical double-layer compression of the negatively charged 2D NMs, thus displaying classical Derjaguin-Landau-Verwey-Overbeek (DLVO)-type interaction. The critical coagulation concentrations (CCC) have been estimated as 37, 60, and 19 mM NaCl and 3, 7.2, and 1.3 mM CaCl2 for MoS2, WS2, and h-BN, respectively. Theoretical predictions of CCC by modified DLVO theory have been found comparable to the experimental values when dimensionality of the materials is taken into account and a molecular modeling approach was used for calculating molecular level interaction energies between individual 2D NM nanosheets. Electrostatic repulsion has been found to govern colloidal stability of MoS2 and WS2 while the van der Waals attraction has been found to govern that of h-BN. SRNOM stabilizes the 2D NMs significantly possibly by electrosteric repulsion. The presence of SRNOM completely stabilized MoS2 and WS2 at both low and high ionic strengths. While h-BN still showed appreciable aggregation in the presence of SRNOM, the aggregation rates were decreased by 2.6- and 3.7-fold at low and high ionic strengths, respectively. Overall, h-BN nanosheets will have higher aggregation potential and thus limited mobility in the natural aquatic environment when compared to MoS2 and WS2. These results can also be used to mechanistically explain fate, transport, transformation, organismal uptake, and toxicity of inorganic 2D NMs in the natural ecosystems.


Assuntos
Grafite , Nanoestruturas , Ecossistema , Eletrólitos , Cinética
15.
J Hazard Mater ; 368: 477-486, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30710776

RESUMO

Lake Erie experiences annual harmful algal blooms (HAB), but generated HAB biomass may provide a waste-based precursor for environmental remediation materials. Three classes of materials (i.e., algal powder biosorbent, porous carbon, and iron/carbon (Fe/C) composite) are prepared from HAB biomass. Algal powder is nonporous with diverse functional groups. Porous carbon, prepared via one-pot carbonization and activation, has surface area up to 430 m2/g. Fe/Cs are prepared by cultivating HAB biomass in iron-rich media, followed by one-pot pyrolysis. Fe/Cs have over 6 wt% iron (Fe0 and Fe3O4) and nitrogen doping (up to 4 wt%). Materials were applied in phenol and Cr(VI) removal tests to identify preferred products for use in water treatment applications. In deionized water, porous carbon removes the most phenol (52 mg/g), followed by algal powder (38 mg/g) and Fe/C (33 mg/g). Micropore volume and functional groups improve phenol removal. Cr(VI) removal follows: Fe/C (43 mg/g) > porous carbon (28 mg/g) > algal powder (17 mg/g), with synergistic adsorption and reduction elevating Fe/C's performance. Cr(VI) and phenol removal studies were completed with variable pH, ionic strength, and water composition to highlight application potential. This work proposes HAB biomass reuse for pollution control, investigating interaction mechanisms between materials and contaminants.


Assuntos
Cromo/química , Proliferação Nociva de Algas , Fenóis/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Biomassa , Carbono/química , Concentração de Íons de Hidrogênio , Ferro/química , Concentração Osmolar , Porosidade
16.
RSC Adv ; 9(2): 963-973, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35517581

RESUMO

GO and nZVI have been used for removing different contaminants from aqueous solution; however, difficulty in the separation of GO, and the aggregation propensity of nZVI particles prevent them from having efficient practical applications. In this study, a green synthesis method was performed to prepare nanohybrids of GO and nZVI to provide an adsorbent with high adsorption efficiency that can be removed from aqueous solution easily by magnetic separation. GO-nZVI nanohybrids were synthesized by using biocompatible cross linkers named 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The effect of the nZVI ratio in the synthesized nanohybrids was studied at three different ratios of GO : nZVI, 1 : 1, 1 : 5 and 1 : 10. SEM/EDS, HRTEM, STEM/EDS, XRD, Raman, FTIR, and TGA analyses were conducted to provide physical and chemical properties of the adsorbents. The performance of nZVI and GO-nZVI nanohybrids as an adsorbent have been studied for methylene blue (MB) removal from an aqueous solution with an initial concentration of 12 mg L-1 at adsorbent dosages of 0.1, 0.3, 0.5, and 1 mg mL-1. Results indicated that GO-nZVI (1 : 5) provided the highest MB removal (99.1%) by using 10 mL of the 1 mg mL-1 adsorbent. After regeneration of the GO-nZVI (1 : 5) nanohybrids with ethanol, 84.3%, 67.2%, and 63.0% of MB removal were achieved in the first to third regeneration cycle. Results also showed that the GO-nZVI nanohybrids were not affected by aggregation compared to nZVI.

17.
Environ Sci Technol ; 52(8): 4610-4622, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29582656

RESUMO

Little is known about the fate and transport of the "new-horizon" multifunctional nanohybrids in the environment. Saturated sand-packed column experiments ( n = 66) were therefore performed to investigate the transport and retention of reduced graphene oxide (RGO)-metal oxide (Fe3O4, TiO2, and ZnO) nanohybrids under environmentally relevant conditions (mono- and divalent electrolytes and natural organic matter). Classical colloid science principles (Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and colloid filtration theory (CFT)) and mathematical models based on the one-dimensional convection-dispersion equation were employed to describe and predict the mobility of RGO-Fe3O4, RGO-TiO2, and RGO-ZnO nanohybrids in porous media. Results indicate that the mobility of the three nanohybrids under varying experimental conditions is overall explainable by DLVO theory and CFT. Numerical simulations suggest that the one-site kinetic retention model (OSKRM) considering both time- and depth-dependent retention accurately approximated the breakthrough curves (BTCs) and retention profiles (RPs) of the nanohybrids concurrently; whereas, others (e.g., two-site retention model) failed to capture the BTCs and/or RPs. This is primarily because blocking BTCs and exponential/hyperexponential/uniform RPs occurred, which is within the framework of OSKRM featuring time- (for kinetic Langmuirian blocking) and depth-dependent (for exponential/hyperexponential/uniform) retention kinetics. Employing fitted parameters (maximum solid-phase retention capacity: Smax = 0.0406-3.06 cm3/g; and first-order attachment rate coefficient: ka = 0.133-20.6 min-1) extracted from the OSKRM and environmentally representative physical variables (flow velocity (0.00441-4.41 cm/min), porosity (0.24-0.54), and grain size (210-810 µm)) as initial input conditions, the long-distance transport scenarios (in 500 cm long sand columns) of the three nanohybrids were predicted via forward simulation. Our findings address the existing knowledge gap regarding the impact of physicochemical factors on the transport of the next-generation, multifunctional RGO-metal oxide nanohybrids in the subsurface.


Assuntos
Grafite , Metais , Óxidos , Tamanho da Partícula , Porosidade , Água
18.
Environ Sci Technol ; 51(21): 12405-12415, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29037033

RESUMO

Carbon-metal oxide nanohybrids (NHs) are increasingly recognized as the next-generation, promising group of nanomaterials for solving emerging environmental issues and challenges. This research, for the first time, systematically explored the transport and retention of carbon nanotube-magnetite (CNT-Fe3O4) NH aggregates in water-saturated porous media under environmentally relevant conditions. A macromolecule modifier, carboxymethylcellulose (CMC), was employed to stabilize the NHs. Our results show that transport of the magnetic CNT-Fe3O4 NHs was lower than that of nonmagnetic CNT due to larger hydrodynamic sizes of NHs (induced by magnetic attraction) and size-dependent retention in porous media. Classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory can explain the mobility of NHs under varying experimental conditions. However, in contrast with colloid filtration theory, a novel transport feature-an initial lower and a following sharp-higher peaks occurred frequently in the NHs' breakthrough curves. The magnitude and location of both transport peaks varied with different experimental conditions, due to the interplay between variability of fluid viscosity and size-selective retention of the NHs. Promisingly, the estimated maximum transport distance of NHs ranged between ∼0.38 and 46 m, supporting the feasibility of employing the magnetically recyclable CNT-Fe3O4 NHs for in situ nanoremediation of contaminated soil, aquifer, and groundwater.


Assuntos
Carboximetilcelulose Sódica , Nanotubos de Carbono , Óxido Ferroso-Férrico , Porosidade , Medicina Estatal , Água
19.
Sci Total Environ ; 568: 926-932, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27350094

RESUMO

Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics.


Assuntos
Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/química , Nanopartículas Metálicas/toxicidade , Óxidos/química , Óxidos/toxicidade
20.
Environ Sci Technol ; 50(7): 3562-71, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26928084

RESUMO

The aggregation kinetics of nC60 and higher-order fullerene (HOF) clusters, i.e., nC70, nC76, and nC84, was systematically studied under a wide range of mono- (NaCl) and divalent (CaCl2) electrolytes and using time-resolved dynamic light scattering. Suwanee River Humic Acid (SRHA) was also used to determine the effect of natural macromolecules on nHOF aggregation. An increase in electrolyte concentration resulted in electrical double-layer compression of the negatively charged fullerene clusters, and the nC60s and nHOFs alike displayed classical Derjaguin-Landau-Verwey-Overbeek (DLVO) type interaction. The critical coagulation concentration (CCC) displayed a strong negative correlation with the carbon number in fullerenes and was estimated as 220, 150, 100, and 70 mM NaCl and 10, 12, 6, and 7.5 mM CaCl2 for nC60, nC70, nC76, and nC84, respectively. The aggregation mechanism (i.e., van der Waals interaction domination) was enumerated via molecular dynamics simulation and modified DLVO model. The presence of SRHA (2.5 mg TOC/L) profoundly influenced the aggregation behavior by stabilizing all fullerene clusters, even at a 100 mM NaCl concentration. The results from this study can be utilized to predict aggregation kinetics of nHOF clusters other than the ones studied here. The scaling factor for van der Waals interaction can also be used to model nHOF cluster interaction.


Assuntos
Organismos Aquáticos/metabolismo , Fulerenos/química , Eletroforese , Substâncias Húmicas/análise , Cinética , Modelos Lineares , Simulação de Dinâmica Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA