Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 588, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660060

RESUMO

BACKGROUND: Lower-grade glioma (LGG) is a highly heterogeneous disease that presents challenges in accurately predicting patient prognosis. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can influence cell death mechanisms, which are critical in tumorigenesis and progression. However, the prognostic significance of the interplay between mitochondrial function and cell death in LGG requires further investigation. METHODS: We employed a robust computational framework to investigate the relationship between mitochondrial function and 18 cell death patterns in a cohort of 1467 LGG patients from six multicenter cohorts worldwide. A total of 10 commonly used machine learning algorithms were collected and subsequently combined into 101 unique combinations. Ultimately, we devised the mitochondria-associated programmed cell death index (mtPCDI) using machine learning models that exhibited optimal performance. RESULTS: The mtPCDI, generated by combining 18 highly influential genes, demonstrated strong predictive performance for prognosis in LGG patients. Biologically, mtPCDI exhibited a significant correlation with immune and metabolic signatures. The high mtPCDI group exhibited enriched metabolic pathways and a heightened immune activity profile. Of particular importance, our mtPCDI maintains its status as the most potent prognostic indicator even following adjustment for potential confounding factors, surpassing established clinical models in predictive strength. CONCLUSION: Our utilization of a robust machine learning framework highlights the significant potential of mtPCDI in providing personalized risk assessment and tailored recommendations for metabolic and immunotherapy interventions for individuals diagnosed with LGG. Of particular significance, the signature features highly influential genes that present further prospects for future investigations into the role of PCD within mitochondrial function.


Assuntos
Glioma , Humanos , Prognóstico , Morte Celular , Aprendizado de Máquina , Mitocôndrias
2.
Exp Neurol ; 369: 114542, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717810

RESUMO

Autophagy is considered a double-edged sword, with a role in the regulation of the pathophysiological processes of the central nervous system (CNS) after cerebral ischemia-reperfusion injury (CIRI). The 18-kDa translocator protein (TSPO) is a highly conserved protein, with its expression level in the nervous system closely associated with the regulation of pathophysiological processes. In addition, the ligand of TSPO reduces neuroinflammation in brain diseases, but the potential role of TSPO in CIRI is largely undiscovered. On this basis, we investigated whether TSPO regulates neuroinflammatory response by affecting autophagy in microglia. In our study, increased expression of TSPO was detected in rat brain tissues with transient middle cerebral artery occlusion (tMCAO) and in BV2 microglial cells exposed to oxygen-glucose deprivation or reoxygenation (OGD/R) treatment, respectively. In addition, we confirmed that autophagy was over-activated during CIRI by increased expression of autophagy activation related proteins with Beclin-1 and LC3B, while the expression of p62 was decreased. The degradation process of autophagy was inhibited, while the expression levels of LAMP-1 and Cathepsin-D were significantly reduced. Results of confocal laser microscopy and transmission electron microscopy (TEM) indicated that autophagy flux was disordered. In contrast, inhibition of TSPO prevented autophagy over-activation both in vivo and in vitro. Interestingly, suppression of TSPO alleviated nerve cell damage by reducing reactive oxygen species (ROS) and pro-inflammatory factors, including TNF-α and IL-6 in microglia cells. In summary, these results indicated that TSPO might affect CIRI by mediating autophagy dysfunction and thus might serve as a potential target for ischemic stroke treatment.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Isquemia Encefálica/complicações , Fatores de Transcrição , Infarto da Artéria Cerebral Média/complicações , Traumatismo por Reperfusão/prevenção & controle , Autofagia
3.
J Oncol ; 2022: 2621969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504559

RESUMO

Background: VASH1 is a novel angiogenic regulatory factor, that participates in the process of carcinogenesis and the development of diverse tumors. Our study aimed to investigate the expression and prognostic value of the VASH1 in Lower-Grade Glioma (LGG), to explore its functional network in LGG and its effects on biological behaviors. Methods: LGG transcriptome data, somatic mutation profiles and clinical features analyzed in the present study were obtained from the TCGA, GTEx, CCLE, CGGA, UALCAN, and GEPIA2 databases, as well as clinical data and tissue sections of 83 LGG patients in our hospital. The expression characteristics of VASH1 in LGG were investigated by univariate, multivariate, immunohistochemistry, qRT-PCR, and western-blot. Subsequently, we analyzed the prognostic significance of VASH1 in LGG patients by survival analysis, subject operation characteristic curve, correlation analysis, external validation, independent prognostic significance analysis, and clinical stratification, and confirmed its biological effect on glioma cell lines in vitro. Finally, we performed GO, KEGG, and GSEA to clarify biological functions and related pathways. CIBERSORT and ESTIMATE algorithms were used to calculate the proportion of immune cells and immune microenvironment fraction in LGG. Result: We found that VASH1 is highly expressed in LGG tissues and is associated with poor prognosis, WHO grade, IDH1 wild-type, and progressive disease (P < 0.05). Multivariate and the Nomogram model showed that high VASH1 expression was an independent risk factor for glioma prognosis and had better prognostic prediction efficacy in different LGG Patient cohorts (HR = 4.753 and P=0.002). In vitro experiments showed that knockdown of VASH1 expression in glioma cell lines caused increased glioma cell proliferation, invasion, and migration capacity. The mechanism may be related to VASH1 promoting microtubule formation and remodeling of immune microenvironment. Conclusion: Our study firstly found that high VASH1 expression was associated with poor prognosis. In addition, We identified the possible mechanism by which VASH1 functioned in LGG. VASH1 inhibits the invasion and migration of tumor cells by affecting microtubule formation and immune infiltration in the tumor microenvironment. May be an important endogenous anti-tumor factor for LGG and provide a potential biomarker for individualized treatment of LGG.

4.
Front Oncol ; 12: 983878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338717

RESUMO

Metastasis is one of the important biological features of malignant tumors and one of the main factors responsible for poor prognosis. Although the widespread application of newer clinical technologies and their continuous development have significantly improved survival in patients with brain metastases, there is no uniform standard of care. More effective therapeutic measures are therefore needed to improve prognosis. Understanding the mechanisms of tumor cell colonization, growth, and invasion in the central nervous system is of particular importance for the prevention and treatment of brain metastases. This process can be plausibly explained by the "seed and soil" hypothesis, which essentially states that tumor cells can interact with various components of the central nervous system microenvironment to produce adaptive changes; it is this interaction that determines the development of brain metastases. As a novel form of intercellular communication, exosomes play a key role in the brain metastasis microenvironment and carry various bioactive molecules that regulate receptor cell activity. In this paper, we review the roles and prospects of brain metastatic tumor cells, the brain metastatic tumor microenvironment, and exosomes in the development and clinical management of brain metastases.

5.
Dis Markers ; 2022: 4918294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246555

RESUMO

Objectives: Glioma patients with brain tumor-related epilepsy (BTRE) have a complex profile due to the simultaneous presence of two pathologies, glioma and epilepsy; however, they have not traditionally received as much attention as those with more malignant brain tumors. The underlying pathophysiology of brain tumor-related epilepsy remains poorly understood. The purpose of this study was to investigate the possible correlation between molecular neuropathology and glioma with BTRE and a wide range of BTRE-associated molecular markers of glioma patients. Methods: A retrospective cohort study of 186 glioma patients was evaluated at our hospital, of which 64 had BTRE. The chi-square test, Spearman rank correlation, and multivariate logistic analyses were used to identify clinicopathological factors associated with BTRE in glioma patients. Results: Of the 186 patients examined in this study, 64 (34.4%) had BTRE. Based on the analysis of the characteristics of these patients, the results showed that patient age (over 40 years; P = 0.007), low WHO grade (grade I, II; P = 0.001), IDH-1 positive mutation (P = 0.027), low ATR-X expression level (OR = 0.44; 95% CI: 0.21, 0.92), and low Ki-67 PI (OR = 0.25; 95% CI: 0.10, 0.68) were associated with the occurrence of BTRE. In our cohort, BTRE patients did not differ by sex, tumor location, or expression of olig-2 and CD34. The results of the matching study showed that low Ki-67 PI and negative ATR-X expression levels were independent factors for a higher incidence of preoperative seizures in glioma patients. Conclusion: The current study updates existing information on genetic markers in gliomas with BTRE and explores the correlation of a wide range of clinicopathological factors and glioma patients with BTRE and suggests three putative biomarkers for BTRE: positive IDH1 mutation, low Ki-67 PI, and negative ATR-X expression. These factors may provide insights for developing a more thorough understanding of the pathogenesis of epilepsy and effective treatment strategies aimed at seizure control.


Assuntos
Neoplasias Encefálicas , Epilepsia , Glioma , Adulto , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Epilepsia/complicações , Epilepsia/genética , Marcadores Genéticos , Glioma/complicações , Glioma/genética , Glioma/patologia , Humanos , Antígeno Ki-67/genética , Estudos Retrospectivos , Convulsões/etiologia
6.
Front Neurol ; 13: 889141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35989938

RESUMO

Background: The role of epigenetic modulation in immunity is receiving increased recognition-particularly in the context of RNA N6-methyladenosine (m6A) modifications. Nevertheless, it is still uncertain whether m6A methylation plays a role in the onset and progression of intracranial aneurysms (IAs). This study aimed to establish the function of m6A RNA methylation in IA, as well as its correlation with the immunological microenvironment. Methods: Our study included a total of 97 samples (64 IA, 33 normal) in the training set and 60 samples (44 IA, 16 normal) in the validation set to systematically assess the pattern of RNA modifications mediated by 22 m6A regulators. The effects of m6A modifications on immune microenvironment features, i.e., immune response gene sets, human leukocyte antigen (HLA) genes, and infiltrating immune cells were explored. We employed Lasso, machine learning, and logistic regression for the purpose of identifying an m6A regulator gene signature of IA with external data validation. For the unsupervised clustering analysis of m6A modification patterns in IA, consensus clustering methods were employed. Enrichment analysis was used to assess immune response activity along with other functional pathways. The identification of m6A methylation markers was identified based on a protein-protein interaction network and weighted gene co-expression network analysis. Results: We identified an m6A regulator signature of IGFBP2, IGFBP1, IGF2BP2, YTHDF3, ALKBH5, RBM15B, LRPPRC, and ELAVL1, which could easily distinguish individuals with IA from healthy individuals. Unsupervised clustering revealed three m6A modification patterns. Gene enrichment analysis illustrated that the tight junction, p53 pathway, and NOTCH signaling pathway varied significantly in m6A modifier patterns. In addition, the three m6A modification patterns showed significant differences in m6A regulator expression, immune microenvironment, and bio-functional pathways. Furthermore, macrophages, activated T cells, and other immune cells were strongly correlated with m6A regulators. Eight m6A indicators were discovered-each with a statistically significant correlation with IA-suggesting their potential as prognostic biological markers. Conclusion: Our study demonstrates that m6A RNA methylation and the immunological microenvironment are both intricately correlated with the onset and progression of IA. The novel insight into patterns of m6A modification offers a foundation for the development of innovative treatment approaches for IA.

7.
Oxid Med Cell Longev ; 2022: 7967722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35993018

RESUMO

Objective: Research over the past decade has suggested important roles for pseudogenes in gliomas. Our previous study found that the RPL4P4 pseudogene is highly expressed in gliomas. However, its biological function in gliomas remains unclear. Methods: In this study, we analyzed clinical data on patients with glioma obtained from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), the Genotype-Tissue Expression (GTEx), and the GEPIA2 databases. We used the R language for the main analysis. Correlations among RPL4P4 expression, pathological characteristics, clinical outcome, and biological function were evaluated. In addition, the correlations of RPL4P4 expression with immune cell infiltration and glioma progression were analyzed. Finally, wound healing, Transwell, and CCK-8 assays were performed to analyze the function of RPL4P4 in glioma cells. Result: We found that RPL4P4 is highly expressed in glioma tissues and is associated with poor prognosis, IDH1 wild type, codeletion of 1p19q, and age. Multivariate analysis and the nomogram model showed that high RPL4P4 expression was an independent risk factor for glioma prognosis and had better prognostic prediction power. Moreover, high RPL4P4 expression correlated with immune cell infiltration, which showed a significant positive association with M2-type macrophages. Finally, RPL4P4 knockdown in glioma cell lines caused decreased glioma cell proliferation, invasion, and migration capacity. Conclusion: Our data suggest that RPL4P4 can function as an independent prognostic predictor of glioma. It also shows that RPL4P4 expression correlates with immune cell infiltration and that targeting RPL4P4 may be a new strategy for the treatment of glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Pseudogenes , Proteínas Ribossômicas , Biomarcadores , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/imunologia , Glioma/patologia , Humanos , Prognóstico , Pseudogenes/genética , Pseudogenes/imunologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/imunologia
8.
Front Mol Biosci ; 9: 844973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359593

RESUMO

Background: DNA methylation is an important epigenetic modification that affects genomic instability and regulates gene expression. Long non-coding RNAs (lncRNAs) modulate gene expression by interacting with chromosomal modifications or remodelling factors. It is urgently needed to evaluate the effects of DNA methylation-related lncRNAs (DMlncRNAs) on genome instability and further investigate the mechanism of action of DMlncRNAs in mediating the progression of lower-grade gliomas (LGGs) and their impact on the immune microenvironment. Methods: LGG transcriptome data, somatic mutation profiles and clinical features analysed in the present study were obtained from the CGGA, GEO and TCGA databases. Univariate, multivariate Cox and Lasso regression analyses were performed to establish a DMlncRNA signature. The KEGG and GO analyses were performed to screen for pathways and biological functions associated with key genes. The ESTIMATE and CIBERSORT algorithms were used to determine the level of immune cells in LGGs and the immune microenvironment fraction. In addition, DMlncRNAs were assessed using survival analysis, ROC curves, correlation analysis, external validation, independent prognostic analysis, clinical stratification analysis and qRT-PCR. Results: We identified five DMlncRNAs with prognostic value for LGGs and established a prognostic signature using them. The Kaplan-Meier analysis revealed 10-years survival rate of 10.10% [95% confidence interval (CI): 3.27-31.40%] in high-risk patients and 57.28% (95% CI: 43.17-76.00%) in low-risk patients. The hazard ratio (HR) and 95% CI of risk scores were 1.013 and 1.009-1.017 (p < 0.001), respectively, based on the univariate Cox regression analysis and 1.009 and 1.004-1.013 (p < 0.001), respectively, based on the multivariate Cox regression analysis. Therefore, the five-lncRNAs were identified as independent prognostic markers for patients with LGGs. Furthermore, GO and KEGG analyses revealed that these lncRNAs are involved in the prognosis and tumorigenesis of LGGs by regulating cancer pathways and DNA methylation. Conclusion: The findings of the study provide key information regarding the functions of lncRNAs in DNA methylation and reveal that DNA methylation can regulate tumour progression through modulation of the immune microenvironment and genomic instability. The identified prognostic lncRNAs have high potential for clinical grouping of patients with LGGs to ensure effective treatment and management.

9.
Mol Cell Biochem ; 477(5): 1417-1438, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35152365

RESUMO

Autophagy is a highly conserved lysosomal degradation process essential in tumorigenesis. However, the involvement of autophagy-related long noncoding RNAs (lncRNAs) in low-grade glioma (LGG) remains unclear. In this study, we established an autophagy-related lncRNA prognostic signature for patients with LGG and assess its underlying functions. We used univariate Cox, least absolute shrinkage and selection operator and multivariate Cox regression models to establish an autophagy-related lncRNA prognostic signature. Kaplan-Meier survival analysis, receiver operating characteristic curve, nomogram, C-index, calibration curve and clinical decision-making curve were used to assess the predictive capability of the identified signature. A signature comprising nine autophagy-related lncRNAs (AL136964.1, ARHGEF26-AS1, PCED1B-AS1, AS104072.1, PRKCQ-AS1, LINC00957, AS125616.1, PSMB8-AS1 and AC087741.1) was identified as a prognostic model. Patients with LGG were divided into the high- and low-risk cohorts based on the median model-based risk score. The survival analysis revealed a 10-year survival rate of 9.3% (95% CI 1.91-45.3%) and 13.48% (95% CI 4.52-40.2%) in high-risk patients in the training and validation sets, respectively, and 48.4% (95% CI 24.7-95.0%) and 48.4% (95% CI 28.04-83.4%) in low-risk patients in the training and validation sets, respectively. This finding suggested a relatively low survival in high-risk patients. In addition, the lncRNA signature was independently prognostic and potentially associated with the progression of LGG. Therefore, the 9-autophagy-related-lncRNA signature may play a crucial role in the diagnosis and treatment of LGG, which may offer new avenues for tumour-targeted therapy.


Assuntos
Glioma , RNA Longo não Codificante , Autofagia/genética , Glioma/genética , Glioma/metabolismo , Humanos , Estimativa de Kaplan-Meier , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
10.
Front Oncol ; 11: 686369, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540663

RESUMO

Gliomas are complex and heterogeneous central nervous system tumors with poor prognosis. Despite the increasing development of aggressive combination therapies, the prognosis of glioma is generally unsatisfactory. Exosomal microRNA (miRNA) has been successfully used in other diseases as a reliable biomarker and even therapeutic target. Recent studies show that exosomal miRNA plays an important role in glioma occurrence, development, invasion, metastasis, and treatment resistance. However, the association of exosomal miRNA between glioma has not been systemically characterized. This will provide a theoretical basis for us to further explore the relationship between exosomal miRNAs and glioma and also has a positive clinical significance in the innovative diagnosis and treatment of glioma.

11.
Am J Cancer Res ; 10(12): 4134-4150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414991

RESUMO

The Central nervous system (CNS) tumor still remains the most lethal cancer, and It is hard to diagnose at an earlier stage on most occasions. It is found that recurrent disease is finally observed in patients who occurred chemo-resistance after completely primary treatment. It is a challenge that monitoring treatment efficacy and tumor recurrence of CNS tumors are full of risks and difficulties by brain biopsies. However, the brain biopsies are considered as an invasive technique with low specificity and low sensitivity. In contrast, the liquid biopsy is based on blood and cerebrospinal fluid (CSF) test, which is going to acceptable among the patients through it's minimally invasive and serial bodily fluids. The advantages of liquid biopsy are to follow the development of tumors, provide new insights in real time, and accurate medical care. The major analytical constituents of liquid biopsy contain the Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating cell-free microRNAs (cfmiRNAs), and circulating exosomes. Liquid biopsy has been widely utilized in CNS tumors in recent years, and the CTCs and ctDNA have become the hot topics for researching. In this review, we are going to explain the clinical potential of liquid biopsy biomarkers in CNS tumor by testing circulating miRNAs and exosomes to evaluate diagnose, prognosis, and response to treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA