Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38808689

RESUMO

The treatment of Giant Cell Tumor (GCT) in the distal radius poses challenges due to the intricate anatomical features of the bone. It often necessitates the use of long implant plates or the interconnection of multiple short plates after tumor excision. However, the deployment of metal plates may increase the risk of screw loosening and various complications. To address these challenges, this study proposes the adoption of carbon fiber-reinforced PEEK (CFRP) as the base material. As a unique strategy, performance parameters (PP) were developed to compare CFRP implant plates with a Ti-6Al-4V plate using the Finite-element Method. The focus was on four elements: the screw axial force, bone growth, callus formation, and bone resorption. The investigation into the screw axial force involved analyzing the internal force of the screw. The remaining parameters were evaluated using the stress, strain, or elastic energy induced in the bones. The findings showed that the second screw endured the largest screw axial force, measuring 10.16 N under a 90-degree 10-N loading at the translocated bone. The model without a callus exerted a significantly greater force on the screw than the model with a callus, leading to screw loosening in the early stage of treatment. The maximum PP, reached 1.62, was achieved with an angle-ply [456/-456] laminate, featuring a weighting fraction of 0.7 for bone growth and 0.1 for the other parameters. This study provides a generalized methodology for assessing the performances of CFRP implants and offers guidelines for future development in composite implant plate technology.

2.
Heliyon ; 8(12): e11999, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36506409

RESUMO

The transition toward sustainable transportation includes adopting ecofriendly electric vehicles in public transport, which reduces greenhouse gas emissions and increases energy efficiency. One of the critical features in fuel economy improvement of electric vehicles lies in lightweight structural design. Nevertheless, the crashworthiness of the structures of the vehicles and the safety of passengers must be guaranteed in the attempt of mass reduction because the crash of large vehicles such as buses usually costs many lives. This paper, therefore, aims to present an in-depth analysis of the impact behavior of a lightweight monocoque sandwich composite microbus body under full-frontal crash conditions. The bus structure, made of a high-density polyurethane foam core and woven glass fabric-epoxy face sheets, was modeled and simulated via LS-DYNA dynamic analysis using strength-based Chang-Chang criteria to characterize the failure mechanism of the structure and investigate intrusion into the passenger survival space. Under front collision, the front panel, A-pillars, and front sidewalls of the original bus were found to be extensively damaged in the compressive fiber mode. Based on the 50th percentile male dummy anthropometric parameters, injury indices of 0-5 intervals were proposed to evaluate occupant injury risks. The maximum front and side intrusion into the specified safety space under a maximum impact speed of 50 km/h is 208 mm at the front panel and 221 mm at the sidewall, indicating high injury indices of 3.59 and 4.81, respectively. The effects of stiffeners reinforced in the front panel and foam core thicknesses in the sidewalls, floor, and bottom parts on crashworthiness improvement were thoroughly discussed. The improved bus design can significantly enhance the safety of the occupants with a minimal increase in structural weight of merely 35.6 kg. An effective vehicle safety design under full frontal collision is presented.

3.
J Mech Behav Biomed Mater ; 136: 105424, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283299

RESUMO

Silicone elastomers are widely recognised as artificial skins for medical prosthesis and cranial injury assessment. Since silicone is not an ideal skin simulant due to the lack of mechanical stiffness and a fibrous structure, the present study aimed to tailor the mechanical and structural characteristics of silicone by integrating biocompatible reinforcements (namely, short polyethylene fibres and bioglass particles) to develop suitable bio-integrative skin simulant candidates. The influences of short polyethylene fibres and bioglass particles in the selected platinum silicone on the mechanical properties of silicone-based composite skin simulants were investigated with various factors, including filler concentration, KMnO4 surface treatment of the polyethylene fibre, and particle size. A comprehensive assessment of the tensile, compressive, and hardness properties of the examined composites was conducted, and they were compared with the properties of human biological skin. The results exhibited that the elastic moduli and the hardness of all composites increased with the concentration of both reinforcements. While integrating only the bioglass particles had the advantage of an insignificant effect on the hardness change of the silicone matrix, the composite with polyethylene fibres possessed superior tensile elastic modulus and tensile strength compared to those of the bioglass reinforced composite. The composites with 5% untreated polyethylene fibres, KMnO4 surface-treated fibres, and bioglass reinforcements enhanced the tensile elastic moduli from the pure silicone up to 32%, 44%, and 22%, respectively. It reflected that the surface treatment of the fibres promotes better interfacial adhesion between the silicone matrix and the fibres. Moreover, the smaller bioglass particle had a greater mechanical contribution than the larger glass particle. Systematically characterised for the first time, the developed composite skin simulants demonstrated essential mechanical properties within the range of the human skin and constituted better skin alternatives than pure silicone for various biomedical applications.


Assuntos
Materiais Dentários , Polietileno , Humanos , Teste de Materiais , Módulo de Elasticidade , Elastômeros de Silicone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA