Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712078

RESUMO

Eukaryotic translation initiation factor (eIF) 3 is a multi-subunit protein complex that binds both ribosomes and messenger RNAs (mRNAs) in order to drive a diverse set of mechanistic steps during translation. Despite its importance, a unifying framework explaining how eIF3 performs these numerous activities is lacking. Using single-molecule light scattering microscopy, we demonstrate that Saccharomyces cerevisiae eIF3 is an equilibrium mixture of the full complex, subcomplexes, and subunits. By extending our microscopy approach to an in vitro reconstituted eIF3 and complementing it with biochemical assays, we define the subspecies comprising this equilibrium and show that, rather than being driven by the full complex, mRNA binding by eIF3 is instead driven by the eIF3a subunit within eIF3a-containing subcomplexes. Our findings provide a mechanistic model for the role of eIF3 in the mRNA recruitment step of translation initiation and establish a mechanistic framework for explaining and investigating the other activities of eIF3.

3.
Front Mol Biosci ; 8: 787664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087868

RESUMO

Translation initiation in eukaryotes is a multi-step pathway and the most regulated phase of translation. Eukaryotic initiation factor 3 (eIF3) is the largest and most complex of the translation initiation factors, and it contributes to events throughout the initiation pathway. In particular, eIF3 appears to play critical roles in mRNA recruitment. More recently, eIF3 has been implicated in driving the selective translation of specific classes of mRNAs. However, unraveling the mechanism of these diverse contributions-and disentangling the roles of the individual subunits of the eIF3 complex-remains challenging. We employed ribosome profiling of budding yeast cells expressing two distinct mutations targeting the eIF3 complex. These mutations either disrupt the entire complex or subunits positioned near the mRNA-entry channel of the ribosome and which appear to relocate during or in response to mRNA binding and start-codon recognition. Disruption of either the entire eIF3 complex or specific targeting of these subunits affects mRNAs with long 5'-untranslated regions and whose translation is more dependent on eIF4A, eIF4B, and Ded1 but less dependent on eIF4G, eIF4E, and PABP. Disruption of the entire eIF3 complex further affects mRNAs involved in mitochondrial processes and with structured 5'-untranslated regions. Comparison of the suite of mRNAs most sensitive to both mutations with those uniquely sensitive to disruption of the entire complex sheds new light on the specific roles of individual subunits of the eIF3 complex.

5.
Elife ; 62017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192585

RESUMO

eIF4A is a DEAD-box RNA-dependent ATPase thought to unwind RNA secondary structure in the 5'-untranslated regions (UTRs) of mRNAs to promote their recruitment to the eukaryotic translation pre-initiation complex (PIC). We show that eIF4A's ATPase activity is markedly stimulated in the presence of the PIC, independently of eIF4E•eIF4G, but dependent on subunits i and g of the heteromeric eIF3 complex. Surprisingly, eIF4A accelerated the rate of recruitment of all mRNAs tested, regardless of their degree of structural complexity. Structures in the 5'-UTR and 3' of the start codon synergistically inhibit mRNA recruitment in a manner relieved by eIF4A, indicating that the factor does not act solely to melt hairpins in 5'-UTRs. Our findings that eIF4A functionally interacts with the PIC and plays important roles beyond unwinding 5'-UTR structure is consistent with a recent proposal that eIF4A modulates the conformation of the 40S ribosomal subunit to promote mRNA recruitment.


Assuntos
Fator de Iniciação 4F em Eucariotos/metabolismo , RNA Helicases/metabolismo , RNA Fúngico/química , RNA Mensageiro/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiões 5' não Traduzidas , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Ligação Proteica , Conformação Proteica , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
6.
Proc Natl Acad Sci U S A ; 114(11): E2126-E2135, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28223523

RESUMO

The eukaryotic 43S preinitiation complex (PIC) bearing Met-tRNAiMet in a ternary complex (TC) with eukaryotic initiation factor (eIF)2-GTP scans the mRNA leader for an AUG codon in favorable "Kozak" context. AUG recognition provokes rearrangement from an open PIC conformation with TC bound in a state not fully engaged with the P site ("POUT") to a closed, arrested conformation with TC tightly bound in the "PIN" state. Yeast ribosomal protein Rps3/uS3 resides in the mRNA entry channel of the 40S subunit and contacts mRNA via conserved residues whose functional importance was unknown. We show that substitutions of these residues reduce bulk translation initiation and diminish initiation at near-cognate UUG start codons in yeast mutants in which UUG selection is abnormally high. Two such substitutions-R116D and R117D-also increase discrimination against an AUG codon in suboptimal Kozak context. Consistently, the Arg116 and Arg117 substitutions destabilize TC binding to 48S PICs reconstituted in vitro with mRNA harboring a UUG start codon, indicating destabilization of the closed PIN state with a UUG-anticodon mismatch. Using model mRNAs lacking contacts with either the mRNA entry or exit channels of the 40S subunit, we demonstrate that Arg116/Arg117 are crucial for stabilizing PIC-mRNA contacts at the entry channel, augmenting the function of eIF3 at both entry and exit channels. The corresponding residues in bacterial uS3 promote the helicase activity of the elongating ribosome, suggesting that uS3 contacts with mRNA enhance multiple phases of translation across different domains of life.


Assuntos
Códon de Iniciação , Complexos Multiproteicos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Alelos , Substituição de Aminoácidos , Fator de Iniciação 5 em Eucariotos/química , Fator de Iniciação 5 em Eucariotos/genética , Fator de Iniciação 5 em Eucariotos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Mutação , Fenótipo , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/química
7.
Elife ; 52016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782884

RESUMO

Eukaryotic translation initiation factor 3 (eIF3) is a central player in recruitment of the pre-initiation complex (PIC) to mRNA. We probed the effects on mRNA recruitment of a library of S. cerevisiae eIF3 functional variants spanning its 5 essential subunits using an in vitro-reconstituted system. Mutations throughout eIF3 disrupt its interaction with the PIC and diminish its ability to accelerate recruitment to a native yeast mRNA. Alterations to the eIF3a CTD and eIF3b/i/g significantly slow mRNA recruitment, and mutations within eIF3b/i/g destabilize eIF2•GTP•Met-tRNAi binding to the PIC. Using model mRNAs lacking contacts with the 40S entry or exit channels, we uncovered a critical role for eIF3 requiring the eIF3a NTD, in stabilizing mRNA interactions at the exit channel, and an ancillary role at the entry channel requiring residues of the eIF3a CTD. These functions are redundant: defects at each channel can be rescued by filling the other channel with mRNA.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Análise Mutacional de DNA , Fator de Iniciação 3 em Eucariotos/genética , Guanosina Trifosfato/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Biossíntese de Proteínas , Subunidades Proteicas/genética , RNA de Transferência de Metionina/metabolismo , Saccharomyces cerevisiae/genética
8.
Mol Cell ; 59(3): 399-412, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26212456

RESUMO

Translation initiation in eukaryotes begins with the formation of a pre-initiation complex (PIC) containing the 40S ribosomal subunit, eIF1, eIF1A, eIF3, ternary complex (eIF2-GTP-Met-tRNAi), and eIF5. The PIC, in an open conformation, attaches to the 5' end of the mRNA and scans to locate the start codon, whereupon it closes to arrest scanning. We present single particle cryo-electron microscopy (cryo-EM) reconstructions of 48S PICs from yeast in these open and closed states, at 6.0 Å and 4.9 Å, respectively. These reconstructions show eIF2ß as well as a configuration of eIF3 that appears to encircle the 40S, occupying part of the subunit interface. Comparison of the complexes reveals a large conformational change in the 40S head from an open mRNA latch conformation to a closed one that constricts the mRNA entry channel and narrows the P site to enclose tRNAi, thus elucidating key events in start codon recognition.


Assuntos
Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/metabolismo , Kluyveromyces/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Kluyveromyces/química , Modelos Moleculares , Iniciação Traducional da Cadeia Peptídica , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA Fúngico/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/química
9.
Cell Rep ; 3(2): 497-508, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23416053

RESUMO

Inferring antibiotic mechanisms on translation through static structures has been challenging, as biological systems are highly dynamic. Dynamic single-molecule methods are also limited to few simultaneously measurable parameters. We have circumvented these limitations with a multifaceted approach to investigate three structurally distinct aminoglycosides that bind to the aminoacyl-transfer RNA site (A site) in the prokaryotic 30S ribosomal subunit: apramycin, paromomycin, and gentamicin. Using several single-molecule fluorescence measurements combined with structural and biochemical techniques, we observed distinct changes to translational dynamics for each aminoglycoside. While all three drugs effectively inhibit translation elongation, their actions are structurally and mechanistically distinct. Apramycin does not displace A1492 and A1493 at the decoding center, as demonstrated by a solution nuclear magnetic resonance structure, causing only limited miscoding; instead, it primarily blocks translocation. Paromomycin and gentamicin, which displace A1492 and A1493, cause significant miscoding, block intersubunit rotation, and inhibit translocation. Our results show the power of combined dynamics, structural, and biochemical approaches to elucidate the complex mechanisms underlying translation and its inhibition.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Transferência Ressonante de Energia de Fluorescência , Gentamicinas/farmacologia , Nebramicina/análogos & derivados , Nebramicina/farmacologia , Conformação de Ácido Nucleico , Paromomicina/farmacologia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo
10.
Nat Struct Mol Biol ; 19(6): 568-76, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22664984

RESUMO

Translation initiation in eukaryotes is a complex and highly regulated process requiring the action of at least 12 protein factors. The pathway is distinguished by the formation of a pre-initiation complex that recruits the 5' end of the mRNA and scans along it to locate the start codon. During the past decade, a combination of genetics, biochemistry and structural studies has begun to illuminate key molecular events in this critical phase of gene expression. Here, we outline our current understanding of eukaryotic translation initiation and discuss important outstanding challenges.


Assuntos
Células Eucarióticas/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Animais , Códon de Iniciação/química , Códon de Iniciação/metabolismo , Células Eucarióticas/química , Fatores de Iniciação em Eucariotos/química , Humanos , Modelos Moleculares , RNA Mensageiro/química , Ribossomos/química , Ribossomos/metabolismo
11.
PLoS Comput Biol ; 6(10): e1000963, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20975935

RESUMO

As nascent proteins are synthesized by the ribosome, they depart via an exit tunnel running through the center of the large subunit. The exit tunnel likely plays an important part in various aspects of translation. Although water plays a key role in many bio-molecular processes, the nature of water confined to the exit tunnel has remained unknown. Furthermore, solvent in biological cavities has traditionally been characterized as either a continuous dielectric fluid, or a discrete tightly bound molecule. Using atomistic molecular dynamics simulations, we predict that the thermodynamic and kinetic properties of water confined within the ribosome exit tunnel are quite different from this simple two-state model. We find that the tunnel creates a complex microenvironment for the solvent resulting in perturbed rotational dynamics and heterogenous dielectric behavior. This gives rise to a very rugged solvation landscape and significantly retarded solvent diffusion. We discuss how this non-bulk-like solvent is likely to affect important biophysical processes such as sequence dependent stalling, co-translational folding, and antibiotic binding. We conclude with a discussion of the general applicability of these results to other biological cavities.


Assuntos
Simulação de Dinâmica Molecular , Biossíntese de Proteínas/fisiologia , Ribossomos/química , Água/química , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Biologia Computacional , Simulação por Computador , Cristalografia por Raios X , Haloarcula marismortui , Dobramento de Proteína , Termodinâmica
12.
Nat Struct Mol Biol ; 17(7): 793-800, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20562856

RESUMO

We report the direct observation of conformational rearrangements of the ribosome during multiple rounds of elongation. Using single-molecule fluorescence resonance energy transfer, we monitored the intersubunit conformation of the ribosome in real time as it proceeds from codon to codon. During each elongation cycle, the ribosome unlocks upon peptide bond formation, then reverts to the locked state upon translocation onto the next codon. Our data reveal both the specific and cumulative effects of antibiotics on individual steps of translation and uncover the processivity of the ribosome as it elongates. Our approach interrogates the precise molecular events occurring at each codon of the mRNA within the full context of ongoing translation.


Assuntos
Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Antibacterianos/farmacologia , Sequência de Bases , Códon/química , Códon/metabolismo , Eritromicina/farmacologia , Escherichia coli/química , Dados de Sequência Molecular , Biossíntese de Proteínas , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/efeitos dos fármacos
13.
Nature ; 464(7291): 1012-7, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20393556

RESUMO

Translation by the ribosome occurs by a complex mechanism involving the coordinated interaction of multiple nucleic acid and protein ligands. Here we use zero-mode waveguides (ZMWs) and sophisticated detection instrumentation to allow real-time observation of translation at physiologically relevant micromolar ligand concentrations. Translation at each codon is monitored by stable binding of transfer RNAs (tRNAs)-labelled with distinct fluorophores-to translating ribosomes, which allows direct detection of the identity of tRNA molecules bound to the ribosome and therefore the underlying messenger RNA (mRNA) sequence. We observe the transit of tRNAs on single translating ribosomes and determine the number of tRNA molecules simultaneously bound to the ribosome, at each codon of an mRNA molecule. Our results show that ribosomes are only briefly occupied by two tRNA molecules and that release of deacylated tRNA from the exit (E) site is uncoupled from binding of aminoacyl-tRNA site (A-site) tRNA and occurs rapidly after translocation. The methods outlined here have broad application to the study of mRNA sequences, and the mechanism and regulation of translation.


Assuntos
Códon/genética , Biossíntese de Proteínas/fisiologia , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Escherichia coli , Fluorescência , Cinética , Ligantes , Medições Luminescentes , Pinças Ópticas , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Ribossomos/química , Ribossomos/genética , Fatores de Tempo
14.
Annu Rev Biophys ; 39: 491-513, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20192783

RESUMO

Our current understanding of the mechanism of translation is based on nearly fifty years of biochemical and biophysical studies. This mechanism, which requires the ribosome to manipulate tRNA and step repetitively along the mRNA, implies movement. High-resolution structures of the ribosome and its ligands have recently described translation in atomic detail, capturing the endpoints of large-scale rearrangements of the ribosome. Direct observation of the dynamic events that underlie the mechanism of translation is challenged by ensemble averaging in bulk solutions. Single-molecule methods, which eliminate these averaging effects, have emerged as powerful tools to probe the mechanism of translation. Single-molecule fluorescence experiments have described the dynamic motion of the ribosome and tRNA. Single-molecule force measurements have directly probed the forces stabilizing ribosomal complexes. Recent developments have allowed real-time observation of ribosome movement and dynamics during translation. This review covers the contributions of single-molecule studies to our understanding of the dynamic nature of translation.


Assuntos
Biossíntese de Proteínas , Ribossomos/metabolismo , Células Eucarióticas/metabolismo , Fluorescência , Modelos Biológicos , Células Procarióticas/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/química
15.
Mol Cell ; 35(1): 37-47, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19595714

RESUMO

Recent structural data have revealed two distinct conformations of the ribosome during initiation. We employed single-molecule fluorescence methods to probe the dynamic relation of these ribosomal conformations in real time. In the absence of initiation factors, the ribosome assembles in two distinct conformations. The initiation factors guide progression of the ribosome to the conformation that can enter the elongation cycle. In particular, IF2 both accelerates the rate of subunit joining and actively promotes the transition to the elongation-competent conformation. Blocking GTP hydrolysis by IF2 results in 70S complexes formed in the conformation unable to enter elongation. We observe that rapid GTP hydrolysis by IF2 drives the transition to the elongation-competent conformation, thus committing the ribosome to enter the elongation cycle.


Assuntos
Guanosina Trifosfato/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Ribossomos/metabolismo , Carbocianinas/química , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Guanosina Trifosfato/química , Hidrólise , Cinética , Modelos Moleculares , Iniciação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/química , Fator de Iniciação 2 em Procariotos/química , Fator de Iniciação 2 em Procariotos/metabolismo , Ligação Proteica , Conformação Proteica , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/química
16.
Annu Rev Biochem ; 77: 177-203, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18518820

RESUMO

Decades of studies have established translation as a multistep, multicomponent process that requires intricate communication to achieve high levels of speed, accuracy, and regulation. A crucial next step in understanding translation is to reveal the functional significance of the large-scale motions implied by static ribosome structures. This requires determining the trajectories, timescales, forces, and biochemical signals that underlie these dynamic conformational changes. Single-molecule methods have emerged as important tools for the characterization of motion in complex systems, including translation. In this review, we chronicle the key discoveries in this nascent field, which have demonstrated the power and promise of single-molecule techniques in the study of translation.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Pinças Ópticas , Biossíntese de Proteínas , Proteínas/química , RNA de Transferência/química , Ribossomos/química , Bioquímica/métodos , Escherichia coli/metabolismo , Guanosina Trifosfato/química , Hidrólise , Cinética , Modelos Biológicos , Peptídeos/química , Proteínas/metabolismo , Fatores de Tempo
17.
Biophys J ; 95(1): 257-72, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18326653

RESUMO

The A-to-B form transition has been examined in three DNA duplexes, d(CGCGAATTCGCG)(2), d(CGCGAATTGCGC), and d(CGCAAATTTCGC), using circular dichroism spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and molecular dynamics (MD) simulation. Circular dichroism spectra confirm that these molecules adopt the A form under conditions of reduced water activity. UVRR results, obtained under similar conditions, suggest that the transition involves a series of intermediate forms between A and B. Cooperative and distinct transitions were observed for the bases and the sugars. Independent MD simulations on d(CGCGAATTCGCG)(2) show a spontaneous change from the A to B form in aqueous solution and describe a kinetic model that agrees well with UVRR results. Based on these observations, we predict that the mechanism of the transition involves a series of A/B hybrid forms and is sequential in nature, similar to previous crystallographic studies of derivatized duplexes. A simulation in which waters were restrained in the major groove of B DNA shows a rapid, spontaneous change from B to A at reduced water activity. These results indicate that a quasiergodic sampling of the solvent distribution may be a problem in going from B to A at reduced water activity in the course of an MD simulation.


Assuntos
DNA/química , DNA/ultraestrutura , Modelos Químicos , Modelos Moleculares , Análise Espectral/métodos , Simulação por Computador , DNA Forma A/química , DNA Forma A/ultraestrutura , Conformação de Ácido Nucleico , Transição de Fase
18.
Biophys J ; 94(5): 1826-35, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17921203

RESUMO

The application of single-molecule fluorescence techniques to complex biological systems places demands on the performance of single fluorophores. We present an enzymatic oxygen scavenging system for improved dye stability in single-molecule experiments. We compared the previously described protocatechuic acid/protocatechuate-3,4-dioxygenase system to the currently employed glucose oxidase/catalase system. Under standardized conditions, we observed lower dissolved oxygen concentrations with the protocatechuic acid/protocatechuate-3,4-dioxygenase system. Furthermore, we observed increased initial lifetimes of single Cy3, Cy5, and Alexa488 fluorophores. We further tested the effects of chemical additives in this system. We found that biological reducing agents increase both the frequency and duration of blinking events of Cy5, an effect that scales with reducing potential. We observed increased stability of Cy3 and Alexa488 in the presence of the antioxidants ascorbic acid and n-propyl gallate. This new O(2)-scavenging system should have wide application for single-molecule fluorescence experiments.


Assuntos
Catalase/metabolismo , Corantes Fluorescentes/química , Sequestradores de Radicais Livres/metabolismo , Glucose Oxidase/metabolismo , Nanotecnologia/métodos , Oxigênio/metabolismo , Ácido Ascórbico/farmacologia , Carbocianinas/química , Estabilidade Enzimática , Hidroxibenzoatos/metabolismo , Microscopia de Fluorescência , Fotodegradação , Galato de Propila/farmacologia , Protocatecoate-3,4-Dioxigenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Nat Protoc ; 2(12): 3270-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18079727

RESUMO

RNA synthesis using in vitro transcription by phage T7 RNA polymerase allows preparation of milligram quantities of RNA for biochemical, biophysical and structural investigations. Previous purification approaches relied on gel electrophoretic or gravity-flow chromatography methods. We present here a protocol for the in vitro transcription of RNAs and subsequent purification using fast-performance liquid chromatography. This protocol greatly facilitates production of RNA in a single day from transcription to purification.


Assuntos
Cromatografia em Gel , RNA/análise , Plasmídeos , RNA Catalítico , Tiazolidinedionas , Transcrição Gênica
20.
J Mol Biol ; 372(1): 103-13, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17619024

RESUMO

Host response to viral RNA genomes and replication products represents an effective strategy to combat viral invasion. PKR is a Ser/Thr protein kinase that binds to double-stranded (ds)RNA, autophosphorylates its kinase domain, and subsequently phosphorylates eukaryotic initiation factor 2alpha (eIF2alpha). This results in attenuation of protein translation, preventing synthesis of necessary viral proteins. In certain DNA viruses, PKR function can be evaded by transcription of highly structured virus-encoded dsRNA inhibitors that bind to and inactivate PKR. We probe here the mechanism of PKR inhibition by two viral inhibitor RNAs, EBER(I) (from Epstein-Barr) and VA(I) (from human adenovirus). Native gel shift mobility assays and isothermal titration calorimetry experiments confirmed that the RNA-binding domains of PKR are sufficient and necessary for the interaction with dsRNA inhibitors. Both EBER(I) and VA(I) are effective inhibitors of PKR activation by preventing trans-autophosphorylation between two PKR molecules. The RNA inhibitors prevent self-association of PKR molecules, providing a mechanistic basis for kinase inhibition. A variety of approaches indicated that dsRNA inhibitors remain associated with PKR under activating conditions, as opposed to activator dsRNA molecules that dissociate due to reduced affinity for the phosphorylated form of PKR. Finally, we show using a HeLa cell extract system that inhibitors of PKR result in translational recovery by the protein synthesis machinery. These data indicate that inhibitory dsRNAs bind preferentially to the latent, dephosphorylated form of PKR and prevent dimerization that is required for trans-autophosphorylation.


Assuntos
Antivirais/farmacologia , RNA de Cadeia Dupla/antagonistas & inibidores , RNA Viral/antagonistas & inibidores , eIF-2 Quinase/metabolismo , Sequência de Bases , Dimerização , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fosforilação/efeitos dos fármacos , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , eIF-2 Quinase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA