Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 6(30): 30115-29, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26336822

RESUMO

Epstein-Barr virus (EBV) is an oncogenic gammaherpes virus which is linked to pathogenesis of several human lymphatic malignancies. The EBV essential latent antigen EBNA3C is critical for efficient conversion of primary human B-lymphocytes to lymphoblastic cell lines and for continued LCL growth. EBNA3C, an EBV latent antigen with oncogenic potential can bind and regulate the functions of a wide range of cellular transcription factors. In our current reverse genetics study, we deleted the full length EBNA3C, and independently the RBP-Jκ and Nm23-H1 binding sites within EBNA3C using BACmid recombinant engineering methodology. Our experiments demonstrated that deletion of the EBV EBNA3C open reading frame (ORF) and more specifically the residues 621-675 which binds Nm23H1 and SUMO-1 showed a significant reduction in the ability of the cells to proliferate. Furthermore, they exhibited lower infectivity of human peripheral blood mononuclear cells (PBMCs). We also showed that recombinant EBV with deletions of the EBNA3C ORF, as well as a recombinant with residues 621-675 within EBNA3C ORF deleted had diminished abilities to activate CD40. Our study also revealed that the full length (1-992) and 621-675 aa deletions of EBNA3C when compared to wild type EBV infected PBMCs had differential expression patterns for the phosphorylation of MAP kinases specifically p38, JNK and ERK. Regulation of ß-catenin also differed among wild type and EBNA3C deleted mutants. These temporal differences in signaling activities of these recombinant viruses in PBMCs is likely important in defining their functional importance in EBV-mediated B-cell transformation.


Assuntos
Proliferação de Células , Transformação Celular Viral , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Ativação Linfocitária , Linfócitos/virologia , Sítios de Ligação , Antígenos CD40/metabolismo , Infecções por Vírus Epstein-Barr/imunologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Células HEK293 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Linfócitos/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Fases de Leitura Aberta , Cultura Primária de Células , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína SUMO-1/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção
2.
PLoS Pathog ; 8(3): e1002573, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438805

RESUMO

EBV latent antigen EBNA3C is indispensible for in vitro B-cell immortalization resulting in continuously proliferating lymphoblastoid cell lines (LCLs). EBNA3C was previously shown to target pRb for ubiquitin-proteasome mediated degradation, which facilitates G1 to S transition controlled by the major transcriptional activator E2F1. E2F1 also plays a pivotal role in regulating DNA damage induced apoptosis through both p53-dependent and -independent pathways. In this study, we demonstrate that in response to DNA damage LCLs knocked down for EBNA3C undergo a drastic induction of apoptosis, as a possible consequence of both p53- and E2F1-mediated activities. Importantly, EBNA3C was previously shown to suppress p53-induced apoptosis. Now, we also show that EBNA3C efficiently blocks E2F1-mediated apoptosis, as well as its anti-proliferative effects in a p53-independent manner, in response to DNA damage. The N- and C-terminal domains of EBNA3C form a stable pRb independent complex with the N-terminal DNA-binding region of E2F1 responsible for inducing apoptosis. Mechanistically, we show that EBNA3C represses E2F1 transcriptional activity via blocking its DNA-binding activity at the responsive promoters of p73 and Apaf-1 apoptosis induced genes, and also facilitates E2F1 degradation in an ubiquitin-proteasome dependent fashion. Moreover, in response to DNA damage, E2F1 knockdown LCLs exhibited a significant reduction in apoptosis with higher cell-viability. In the presence of normal mitogenic stimuli the growth rate of LCLs knockdown for E2F1 was markedly impaired; indicating that E2F1 plays a dual role in EBV positive cells and that active engagement of the EBNA3C-E2F1 complex is crucial for inhibition of DNA damage induced E2F1-mediated apoptosis. This study offers novel insights into our current understanding of EBV biology and enhances the potential for development of effective therapies against EBV associated B-cell lymphomas.


Assuntos
Antígenos Virais/metabolismo , Apoptose/genética , Fator de Transcrição E2F1/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Linfócitos/virologia , Antígenos Virais/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Fator de Transcrição E2F1/antagonistas & inibidores , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Linfoma de Células B/imunologia , Linfoma de Células B/virologia , Osteoblastos/imunologia , Osteoblastos/virologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA