Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38693729

RESUMO

BACKGROUND: Panax ginseng (PG) is a plant that contains ginsenosides, which are considered adaptogens that confer cellular protection. However, the impact of PG on pituitary-ovarian dysfunction and subsequent infertility is unknown. This study investigated the hypothesis that PG would attenuate pituitary-ovarian dysfunction associated with mobile phone's Radiofrequency Electromagnetic Radiation (RF-EMR) in experimental rat models and the possible involvement of a cAMP Response Element Modulator (CREM)-dependent pathway. METHODS: Twenty adult female Wistar rats were divided randomly into four groups, each consisting of five rats. The control group was administered a vehicle (distilled water) orally, while the P. ginseng group received 200 mg/kg of P. ginseng extract orally. The RF-EMR group was exposed to 900MHz radiation, and the RF-EMR + PG group was exposed to the same radiation while also being treated with 200 mg/kg of P. ginseng orally. These treatments were administered daily for a period of 56 days. RESULTS: The RF-EMR group exhibited significant reductions in serum levels of LH, FSH, estradiol, and progesterone compared to the control group. Moreover, levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were significantly lower in the RF-EMR group compared to the control. Additionally, there was a notable decrease in the expression of the CREM gene, accompanied by disrupted pituitary/ovarian morphology in the RF-EMR group compared to the control. However, the administration of PG mitigated these changes. CONCLUSION: The findings of this study indicate that P. ginseng extract shields against pituitary-ovarian impairment linked to RF-EMR exposure from cell phones by boosting antioxidant capacity and promoting the CREM-dependent pathway.

2.
BMC Neurosci ; 24(1): 62, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996797

RESUMO

Polycystic ovarian syndrome (PCOS) is a known endocrine disorder that has affected many women of childbearing age, and is accompanied by various neurodegenerative conditions. Hence, this study investigates the impact of butyrate in reversing hypothalamic-related disorder, possibly through γ aminobutyric acid (GABA) in a rat model of PCOS. Eight-week-old female Wistar rats were allotted into four groups (n = 5), which include control, butyrate, letrozole, and letrozole + butyrate groups. PCOS was induced by administering 1 mg/kg of letrozole (oral gavage) for 21 days. After confirmation of PCOS, 200 mg/kg of butyrate (oral gavage) was administered for 6 weeks. Rats with PCOS were characterized by elevated levels of plasma insulin and testosterone. Increases in plasma and hypothalamic triglyceride levels, inflammatory biomarker (SDF-1), apoptotic marker (caspase-6), and decreased plasma GnRH were observed. Additionally, a decrease in hypothalamic GABA was revealed. Nevertheless, the administration of butyrate attenuated these alterations. The present study suggests that butyrate ameliorates hypothalamic inflammation in an experimental model of PCOS, a beneficial effect that is accompanied by enhanced GABA production.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/induzido quimicamente , Letrozol , Ácido Butírico/efeitos adversos , Ratos Wistar , Ácido gama-Aminobutírico , Modelos Teóricos , Modelos Animais de Doenças
3.
J Biomol Struct Dyn ; 40(7): 2934-2954, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33155529

RESUMO

Mycobacterium tuberculosis (Mtb) encoded secreted antigen 85 enzymes (Ag85A/Ag85B/Ag85C) play that critical roles in the virulence, survival and drug-resistant TB of the pathogen. Ag85 proteins are potential antitubercular drug targets because they are essential in the catalytic synthesis of trehalose moieties and mycolic acid attachment to the Mtb cell wall. Recently, experimental protocols led to the discovery of a selective covalent Ag85 inhibitor, ß-isomer monocyclic enolphosphorus Cycliphostin (CyC8ß) compound, which targets the Ag85 serine 124 to exhibit a promising therapeutic activity. For the first time, our study unravelled the structural features among Mtb Ag85C homologs and motions and dynamics of Ag85C when the CyC8ß bound covalently and in open model conformations to the protein using bioinformatics tools and integrated Molecular dynamics simulations. Comparative Ag85C sequence analysis revealed conserved regions; 70% active site, 90% Adeniyi loop L1 and 50% loop L2, which acts as a switch between open and closed conformations. The average C-α atoms RMSD (2.05 Å) and RMSF (0.9 Å) revealed instability and high induced flexibility in the CyC8ß covalent-bound compared to the apo and open model systems, which displayed more stability and lower fluctuations. DSSP showed structural transitions of α-helices to bend and loops to 310-helices in the bound systems. SASA of CyC8ß covalent bound showed active site hydrophobic residues exposure to huge solvent. Therefore, these findings present the potential opportunity hotspots in Ag85C protein that would aid the structure-based design of novel chemical entities capable of resulting in potent antitubercular drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/química , Antituberculosos/farmacologia , Domínio Catalítico , Desenho de Fármacos , Simulação de Dinâmica Molecular
4.
Comb Chem High Throughput Screen ; 25(5): 831-837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33538664

RESUMO

BACKGROUND: Deubiquitinating enzymes (DUBs) protein family have been implicated in some deregulated pathways involved in carcinogeneses, such as cell cycle, gene expression, and DNA damage response (DDR). Zinc finger with UFM1-specific peptidase domain protein (ZUFSP) is one of the recently discovered members of the DUBs. OBJECTIVES: To identify and cross-validate the ZUFSP binding site using the bioinformatic tools, including SiteMap&Metapocket, respectively. To understand the molecular basis of complementary ZUFSP-Ub interaction and associated structural events using MD Simulation. METHODS: In this study, four binding pockets were predicted, characterized, and cross-validated based on physiochemical features such as site score, druggability score, site volume, and site size. Also, a molecular dynamics simulation technique was employed to determine the impact of ubiquitin-binding on ZUFSP. RESULTS: Site 1 with a site score 1.065, Size 102, D scores 1.00, and size volume 261 was predicted to be the most druggable site. Structural studies revealed that upon ubiquitin-binding, the motional movement of ZUFSP was reduced when compared to the unbound ZUFSP. Also, the ZUFSP helical arm (ZHA) domain orient in such a way that it moves closer to the Ub; this orientation enables the formation of a UBD which is very peculiar to ZUFSP. CONCLUSION: The impact of ubiquitin on ZUFSP movement and the characterization of its predicted druggable site can be targeted in the development of therapeutics.


Assuntos
Ubiquitina , Dedos de Zinco , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Domínios Proteicos , Ubiquitina/metabolismo
5.
Reprod Toxicol ; 106: 69-81, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34656705

RESUMO

Type 2 diabetes mellitus (T2DM) accounts for 90-95 % of worldwide diabetes cases and is primarily characterized by insulin resistance. Its progression as a chronic metabolic disease has been largely associated with female reproductive abnormalities, including ovarian dysfunction with consequent infertility. Epigenetic modifications have been suggested as a possible link to metabolic comorbidities. We therefore hypothesized that short chain fatty acids, acetate (ACA), a potential histone deacetylase inhibitor (HDAC) ameliorates hypothalamic-pituitary-ovarian (HPO) dysfunction in T2DM. Female Wistar rats weighing 160-190 g were allotted into three groups (n = 6/group): Control (vehicle; po), T2D and T2D + ACA (200 mg/kg; po). T2DM was induced by fructose administration (10 %; w/v) for 6 weeks and single dose of streptozotocin (35 mg/kg; ip). The present data showed that in addition to insulin resistance, increased fasting blood glucose and insulin, T2DM induced elevated plasma, hypothalamic and ovarian triglyceride, lipid peroxidation, TNF-α and glutathione depletion. Aside, T2DM also led to increased plasma lactate production and γ-Glutamyl transferase as well as decreased gonadotropins/17ß-estradiol. Histologically, hypothalamus, pituitary and ovaries revealed disrupted neuronal cells/moderate hemorrhage, altered morphology/vascular congestions, and degenerated antral follicle/graafian follicle with mild fibrosis and infiltrated inflammatory cells respectively in T2D animals. Interestingly, these alterations were accompanied by elevated plasma/hypothalamic HDAC5 and attenuated when treated with acetate. The present results demonstrate that T2DM induces HPO dysfunction, which is accompanied by elevated circulating/hypothalamic HDAC5. The results in addition suggest that acetate restores HPO function in T2DM by suppression of HDAC5 and enhancement of insulin sensitivity.


Assuntos
Acetatos/farmacologia , Diabetes Mellitus Tipo 2/fisiopatologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Ovário/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/fisiopatologia , Feminino , Sistema Hipotálamo-Hipofisário/fisiopatologia , Peroxidação de Lipídeos , Ovário/fisiopatologia , Ratos , Ratos Wistar , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/análise
6.
Cytokine ; 142: 155501, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33775493

RESUMO

Impaired renal function is a common complication of diabetes mellitus (DM) that often degenerates to cardiovascular disease, contributing to high morbidity and reduced survival worldwide. Short chain fatty acids (SCFAs), including acetate has shown potential benefits in glycemic or metabolic regulation but its effect on diabetes-associated renal toxicity/impairment is not clear. Herein, we investigated the hypothesis that acetate would ameliorate renal toxicity, accompanying DM, possibly by suppression of xanthine oxidase (XO) activity. Adult male Wistar rats (230-260 g) were allotted into groups (n = 6/group) namely: control (vehicle; po), sodium acetate (NaAc)-treated (200 mg/kg), diabetic with or without NaAc groups. DM was induced by intraperitoneal injection of streptozotocin 65 mg/kg after a dose of nicotinamide (110 mg/kg). Diabetic animals showed increased fasting glucose and insulin, renal triglyceride, total cholesterol, atherogenic lipid, malondialdehyde, XO, tissue necrosis factor-α, uric acid, interleukin-6, aspartate transaminase/alanine aminotransferase ratio, gamma-glutamyl transferase and decreased glutathione and nitric oxide concentration. The renal tissue was characterized with disrupted tissue architecture, enlarged Bowman's space, congested glomeruli and adherence of abnormal segments of tuft to Bowman's capsule with consequent elevated serum creatinine and urea concentration. However, these alterations were attenuated by NaAc. The study demonstrates that acetate ameliorates diabetes-induced nephrotoxicity, which is associated with suppressed XO and its accompanied pro-inflammatory mediators. Therefore, SCFAs, acetate would be a promising dietary-derived therapeutic agent for the prevention and management of diabetes-associated renal disturbances.


Assuntos
Diabetes Mellitus Experimental/patologia , Rim/enzimologia , Rim/patologia , Acetato de Sódio/farmacologia , Xantina Oxidase/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Aterosclerose/sangue , Aterosclerose/complicações , Glicemia/metabolismo , Colesterol/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Jejum/sangue , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Insulina/sangue , Rim/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Modelos Biológicos , Niacinamida , Óxido Nítrico/metabolismo , Ratos Wistar , Estreptozocina , Triglicerídeos/metabolismo
7.
Protein J ; 40(1): 28-40, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33512633

RESUMO

Researches have revealed that functional non-synonymous Single Nucleotide Polymorphism (nsSNPs) present in the Zinc-finger with UFM1-Specific Peptidase domain protein (ZUFSP) may be involved in genetic instability and carcinogenesis. For the first time, we employed in-silico approach using predictive tools to identify and validate potential nsSNPs that could be pathogenic. Our result revealed that 8 nsSNPs (rs 112738382, rs 140094037, rs 201652589, rs 201847265, rs 202076827, rs 373634906, rs 375114528, rs 772591104) are pathogenic after being subjected to rigorous filtering process. The structural impact of the nsSNPs on ZUFSP structure indicated that the nsSNPs affect the stability of the protein by lowering ZUFSP protein stability. Furthermore, conservation analysis showed that rs 201652589, rs 140094037, rs 201847265, and rs 772591104 were highly conserved. Interestingly, the protein-protein affinity between ZUFSP and Ubiquitin was altered rs 201652589, rs 140094037, rs 201847265, and rs 772591104 had a binding affinity of - 0.46, - 0.83, - 1.62, and - 1.12 kcal/mol respectively. Our study has been able to identify potential nsSNPs that could be used as genetic biomarkers for some diseases arising as a result of aberration in the ZUFSP structure, however, being a predictive study, the identified nsSNPs need to be experimentally investigated.


Assuntos
Biomarcadores Tumorais/química , Carcinogênese/genética , Enzimas Desubiquitinantes/química , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Ubiquitina/química , Sequência de Aminoácidos , Sítios de Ligação , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Biologia Computacional/métodos , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Instabilidade Genômica , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Alinhamento de Sequência , Termodinâmica , Ubiquitina/genética , Ubiquitina/metabolismo
8.
Curr Pharm Biotechnol ; 22(7): 995-1004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32744966

RESUMO

BACKGROUND: ZUFSP (Zinc-finger and UFSP domain protein) is a novel representative member of the recently characterized seventh class of deubiquitinating enzymes (DUBs). Due to the roles DUBs play in genetic instability, they have become a major drug target in cancer and neurodegenerative diseases. ZUFSP, being a DUB enzyme has also been implicated in genetic stability. However, no lead compound has been developed to target ZUFSP. OBJECTIVE/METHODS: Therefore, in this study, we used a combined drug repurposing, virtual screening and per-Residue Energy Decomposition (PRED) to identify ZUFSP inhibitors with therapeutic potential. 3-bromo-6-{[4-hydroxy-1-3(3-phenylbutanoyl)piperidin-4-yl]methyl}-4H,5H,6H,7H-thieno[2,3- C]pyridine-7-one (BHPTP) which is an inhibitor of USP7 was repurposed to target ZUFSP. The rationale behind this is based on the similarity of the active between USP7 and ZUFSP. RESULTS: PRED of the binding between BHPTP and ZUFSP revealed Cys223, Arg408, Met410, Asn460, and Tyr465 as the crucial residues responsible for this interaction. The pharmacophoric moieties of BHPTP responsible for this binding along with other physiochemical properties were used as a filter to retrieve potential ligands. 799 compounds were retrieved, ZINC083241427, ZINC063648749, and ZINC063648753 were selected due to the binding energy they exhibited. Cheminformatics analysis revealed that the compounds possess high membrane permeability, however, BHPTP had a low membrane permeability. Furthermore, the compounds are drug like, having obeyed Lipinski's rule of five. CONCLUSION: Taken together, findings from this study put ZINC083241427, ZINC063648749, and ZINC063648753 as potential ZUFSP inhibitor, however, more experimental validation is required to unravel the mechanism of actions of these compounds.


Assuntos
Domínio Catalítico/efeitos dos fármacos , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Peptidase 7 Específica de Ubiquitina/química , Dedos de Zinco/efeitos dos fármacos , Domínio Catalítico/fisiologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular/métodos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Dedos de Zinco/fisiologia
9.
RSC Adv ; 10(39): 23466-23483, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35520325

RESUMO

Drug-resistant Tuberculosis (TB) has remained the top global health challenge, with a yearly estimation of 10 million infections and 1.5 million deaths in humans. Demethylmenaquinone methyltransferase (menG) catalyzes demethylmenaquinone conversion to menaquinone (MK) that is implicated in the TB pathogenesis, hence, it has become a major drug target. DG70 is a biphenyl amide compound known to be a high binding affinity inhibitor of menG. This study investigated the structural and dynamic impacts of DG70 upon binding to menG using atom-based dynamic simulation. Our findings revealed that the modeled structure of menG possesses some Rossman-like methyltransferase characteristic features including two GXG motifs, an omega-like loop (residues 210-220) called the Thompson loop, nine α-helices, five ß-strands, etc. Furthermore, atom-based dynamic simulations revealed that the Thompson loop is critical in the therapeutic activity of DG70. The loop assumed an open conformation in the unliganded-menG structure. However, in the DG70-menG, it assumed a tightly closed conformation. This explains the high binding affinity (-32.48 kcal mol-1) observed in the energy calculations. Interestingly, these findings are further collaborated by the conformational perturbation in the menG protein. Conclusively, insights from this study, highlight the structural "Achilles heel" in menG protein which can be further leveraged by inhibitors tailored to specifically target them.

10.
Rev Urol ; 15(3): 97-107, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223021

RESUMO

Prostate cancer (PCa) is the most frequently diagnosed malignancy and the second leading cause of cancer death in men in the United States and other parts of the world. The lifetime risk of being diagnosed with PCa is approximately 16%. At present, the only widely accepted screening tools for PCa are prostate-specific antigen (PSA) and digital rectal examination. PSA is known to be prostate specific, but not PCa specific, and hence lacks the sensitivity to detect a large number of tumors, especially during the early stages. The PSA level is also known to be affected by many factors, such as medication, inflammation (benign prostatic hyperplasia and prostatitis), and urologic manipulation; hence, the controversy regarding the appropriate level of serum PSA that should trigger a biopsy or have clinical relevance to prostate metastases. Attempts to determine the level of prostate cells in peripheral blood by reverse transcriptase polymerase chain reaction did not significantly improve cancer diagnosis or predict postoperative failure. Therefore, the search continues for a novel biomarker or a panel of markers as well as other possible interventions to improve the use of PSA. This article reviews several possibilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA