Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11871, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789586

RESUMO

ZnO based piezoelectric nanogenerators (PENG) hold immense potential for harvesting ambient vibrational mechanical energy into electrical energy, offering sustainable solutions in the field of self-powered sensors, wearable electronics, human-machine interactions etc. In this study, we have developed flexible ZnO-based PENGs by incorporating ZnO microparticles into PDMS matrix, with ZnO concentration ranging from 5 to 25 wt%. Among these, the PENG containing 15 wt% ZnO exhibited the best performance with an open-circuit output voltage/short-circuit current of ~ 42.4 V/2.4 µA. To further enhance the output performance of PENG, p-type NiO was interfaced with ZnO in a bulk hetero-junction geometry. The concentration of NiO was varied from 5 to 20 wt% with respect to ZnO and incorporated into the PDMS matrix to fabricate the PENGs. The PENG containing 10 wt% NiO exhibits the best performance with an open-circuit output voltage/short-circuit current of ~ 65 V/4.1 µA under loading conditions of 30 N and 4 Hz. The PENG exhibiting the best performance demonstrates a maximum instantaneous output power density ~ 37.9 µW/cm2 across a load resistance of 20 MΩ under loading conditions of 30 N and 4 Hz, with a power density per unit force and Hertz of about ~ 0.32 µW/cm2·N·Hz. The enhanced output performance of the PENG is attributed to the reduction in free electron concentration, which suppresses the internal screening effect of the piezopotential. To assess the practical utility of the optimized PENG, we tested the powering capability by charging various commercial capacitors and used the stored energy to illuminate 10 LEDs and to power a stopwatch displays. This work not only presents a straightforward, cost-effective, and scalable technique for enhancing the output performance of ZnO-based PENGs but also sheds light on its underlying mechanism.

2.
Nanotechnology ; 35(29)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38636460

RESUMO

The tunability and controllability of conductance quantization mediated multilevel resistive switching (RS) memory devices, fabricated in crossbar geometry can be a promising alternative for boosting storage density. Here, we report fabrication of Cu/TiO2/Pt based RS devices in 8 × 8 crossbar geometry, which showed reliable bipolar RS operations. The crossbar devices showed excellent spatial and temporal variability, time retention and low switching voltage (<1 V) and current (∼100µA). Furthermore, during the reset switching, highly repeatable and reliable integral and half-integral quantized conductance (QC) was observed. The observed QC phenomenon was attributed to the two dimensional confinement of electrons as lateral width of the conducting filament (CF) matches the fermi wavelength. The magnitude and number of the QC steps were found to increase from ∼2.5 to 12.5 and from 5 to 18, respectively by increasing the compliance current (IC) from 50 to 800µA which also increased the diameter of the CF from ∼1.2 to 3.3 nm. The enhancement in both number and magnitude of QC states was explained using electrochemical dissolution mechanism of CF of varying diameter. A thicker CF, formed at higherIC, undergoes a gradual rupture during reset process yielding a greater number of QC steps compared to a thinner CF. The realisation of QC states in the crossbar Cu/TiO2/Pt device as well asICmediated tunability of their magnitude and number may find applications in high-density resistive memory storage devices and neuromorphic computing.

3.
ACS Appl Mater Interfaces ; 15(21): 25713-25725, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37199948

RESUMO

Bio-mimetic advanced electronic systems are emerging rapidly, engrossing their applications in neuromorphic computing, humanoid robotics, tactile sensors, and so forth. The biological synaptic and nociceptive functions are governed by intricate neurotransmitter dynamics that involve both short-term and long-term plasticity. To emulate the neuronal dynamics in an electronic device, an Ag/TiO2/Pt/SiO2/Si memristor is fabricated, exhibiting compliance current controlled reversible transition of volatile switching (VS) and non-volatile switching (NVS). The origin of the VS and NVS depends on the diameter of the conducting filament, which is explained using a field-induced nucleation theory and validated by temporal current response measurements. The switching delay of the device is used to determine the characteristic nociceptive behaviors such as threshold, relaxation, inadaptation, allodynia, and hyperalgesia. The short-term and long-term retention loss attributed to the VS and NVS, respectively, is used to emulate short-term memory and long-term memory of the biological brain in a single device. More importantly, synergistically modulating the VS-NVS transition, the complex spike rate-dependent (SRDP) and spike time-dependent plasticity (STDP) with a weight change of up to 600% is demonstrated in the same device, which is the highest reported so far for TiO2 memristors. Furthermore, the device exhibits very low power consumption, ∼3.76 pJ/spike, and can imitate synaptic and nociceptive functions. The consolidation of complex nociceptive and synaptic behavior in a single memristor facilitates low-power integration of scalable intelligent sensors and neuromorphic devices.


Assuntos
Nociceptores , Dióxido de Silício , Encéfalo , Sinapses
4.
Nanoscale ; 15(18): 8337-8355, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37092181

RESUMO

Considering the excellent tunability of electrical and dielectric properties in binary metal oxide based multi-layered nanolaminate structures, a thermal atomic layer deposition system is carefully optimized for the synthesis of device grade Al2O3/TiO2 nanolaminates with well-defined artificial periodicity and distinct interfaces, and the role of process temperature in the structural, interfacial, dielectric and electrical properties is systematically investigated. A marginal increase in interfacial interdiffusion in these nanolaminates, at elevated temperatures, is validated using X-ray reflectivity and secondary ion mass spectrometry studies. With an increase in deposition temperature from 150 to 300 °C, the impedance spectroscopy measurements of these nanolaminates exhibited a monotonic increment in dielectric constant from ∼95 to 186, and a decrement in dielectric loss from ∼0.48 to 0.21, while the current-voltage measurements revealed a subsequent reduction in leakage current density from ∼2.24 × 10-5 to 3.45 × 10-7 A cm-2 at 1 V applied bias and an improvement in nanobattery polarization voltage from 100 mV to 700 mV, respectively. This improvement in dielectric and electrical properties at elevated processing temperature is attributed to the reduction in impurity content along with the significant enhancement in sublayer densities and the conductivity contrast driven Maxwell-Wagner interfacial polarisation. Additionally, the devices fabricated at 300 °C exhibited a higher capacitance density of ∼22.87 fF µm-2, a low equivalent oxide thickness of ∼1.51 nm, and a low leakage current density of ∼10-7 A cm-2 (at 1 V bias), making this nanolaminate a promising material for high-density energy storage applications. These findings highlight the ALD process temperature assisted growth chemistry of Al2O3/TiO2 nanolaminates for superior dielectric performance and multifaceted applications.

5.
J Nanosci Nanotechnol ; 15(5): 3944-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26505029

RESUMO

Asymmetric (CuGaO2/ZnO/ZnMgO) and symmetric (ZnMgO/ZnO/ZnMgO) multiple quantum well (MQW) structures were successfully fabricated using pulsed laser deposition (PLD) and their comparison were made. Efficient room temperature photoluminescent (PL) emission was observed from these MQWs and temperature dependent luminescence of asymmetric and symmetric MQWs can be explained using the existing theories. A systematic blue shift was observed in both MQWs with decrease in the confinement layer thickness which could be attributed to the quantum confinement effects. The PL emission from asymmetric and symmetric MQW structures were blue shifted compared to 150 nm thick ZnO thin film grown by PLD due to quantum confinement effects.


Assuntos
Substâncias Luminescentes/química , Metais Pesados/química , Óxidos/química , Pontos Quânticos/química , Nanotecnologia , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA