Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Swiss J Geosci ; 115(1): 5, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221869

RESUMO

Western Anatolia is one of the most seismically active regions worldwide. To date, the paleoseismic history of many major faults, in terms of recurrence intervals of destructive earthquakes, their magnitude, displacement, and slip rates is poorly understood. Regional crustal extension has produced major horst-graben systems bounded by kilometer-scale normal faults locally in carbonates, along which vertical crustal displacements occurred. In this study, we explore the seismic history of western Anatolia using 36Cl exposure dating through study of well-preserved carbonate normal fault scarps. To accomplish this, 36Cl concentrations in 214 samples from fault plane transects on the Rahmiye and Ören fault scarps were measured and compared with existing 36Cl measurements of 370 samples on five fault scraps in western Anatolia. At least 20 seismic events have been reconstructed over the past 16 kyr. The age correlation of the seismic events implies four phases of high seismic activity in western Anatolia, at around 2, 4, 6, and 8 ka. Slips are modeled ranging between 0.6 to 4.2 m per seismic event, but are probably the result of clustered earthquakes of maximum magnitude 6.5 to 7.1. While the average slip rates have values of 0.3 to 1.9 mm/yr, incremental slip rates of the faults range greater than 0.1 to 2.2 mm/yr, showing more activity mostly through late Holocene. Our finding reveals high capability of cosmogenic 36Cl dating to explore seismic behavior of active faults beyond the existing earthquake records. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s00015-022-00408-x.

2.
Sci Adv ; 7(11)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33712457

RESUMO

Today's ice caps and glaciers in Africa are restricted to the highest peaks, but during the Pleistocene, several mountains on the continent were extensively glaciated. However, little is known about regional differences in the timing and extent of past glaciations and the impact of paleoclimatic changes on the afro-alpine environment and settlement history. Here, we present a glacial chronology for the Ethiopian Highlands in comparison with other East African Mountains. In the Ethiopian Highlands, glaciers reached their maximum 42 to 28 thousand years ago before the global Last Glacial Maximum. The local maximum was accompanied by a temperature depression of 4.4° to 6.0°C and a ~700-m downward shift of the afro-alpine vegetation belt, reshaping the human and natural habitats. The chronological comparison reveals that glaciers in Eastern Africa responded in a nonuniform way to past climatic changes, indicating a regionally varying influence of precipitation, temperature, and orography on paleoglacier dynamics.

3.
Data Brief ; 26: 104476, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667241

RESUMO

We publish a MATLAB code used to analyze concentration profile of cosmogenic 36Cl accumulated in-situ through a rupture history of the fault scarps in western Turkey (Mozafari et al., 2019). The code is a version of the forward modeling Matlab code -Fault Scarp Dating Tool- (Tikhomirov, 2014). The code models a 36Cl profile accumulated in the fault scarp surface through a guessed rupture history, and compares the modeled and measured 36Cl profiles with statistical tests. Rupture histories are randomly generated in bounded solution space using Monte-Carlo method or optimized using Random Walk algorithm to achieve the best fit of the modeled and measured 36Cl profiles. The code has a user-friendly interface, a build-in help and an example of input data.

4.
Sci Rep ; 9(1): 11023, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363133

RESUMO

Quantifications of in-situ denudation rates on vertical headwalls, averaged over millennia, have been thwarted because of inaccessibility. Here, we benefit from a tunnel crossing a large and vertical headwall in the European Alps (Eiger), where we measured concentrations of in-situ cosmogenic 36Cl along five depth profiles linking the tunnel with the headwall surface. Isotopic concentrations of 36Cl are low in surface samples, but high at depth relative to expectance for their position. The results of Monte-Carlo modelling attribute this pattern to inherited nuclides, young minimum exposure ages and to fast average denudation rates during the last exposure. These rates are consistently high across the Eiger and range from 45 ± 9 cm kyr-1 to 356 ± 137 cm kyr-1 (1σ) for the last centuries to millennia. These high rates together with the large inheritance point to a mechanism where denudation has been accomplished by frequent, cm-scale rock fall paired with chemical dissolution of limestone.

5.
Science ; 365(6453): 583-587, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395781

RESUMO

Studies of early human settlement in alpine environments provide insights into human physiological, genetic, and cultural adaptation potentials. Although Late and even Middle Pleistocene human presence has been recently documented on the Tibetan Plateau, little is known regarding the nature and context of early persistent human settlement in high elevations. Here, we report the earliest evidence of a prehistoric high-altitude residential site. Located in Africa's largest alpine ecosystem, the repeated occupation of Fincha Habera rock shelter is dated to 47 to 31 thousand years ago. The available resources in cold and glaciated environments included the exploitation of an endemic rodent as a key food source, and this played a pivotal role in facilitating the occupation of this site by Late Pleistocene hunter-gatherers.


Assuntos
Altitude , Camada de Gelo , Ocupações/história , Características de Residência/história , Aclimatação/genética , Animais , Etiópia , Alimentos/história , História Antiga , Humanos , Paleontologia , Roedores
6.
Sci Rep ; 8(1): 2299, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396427

RESUMO

Terrestrial cosmogenic nuclide concentrations of detrital minerals yield catchment-wide rates at which hillslopes erode. These estimates are commonly used to infer millennial scale denudation patterns and to identify the main controls on mass-balance and landscape evolution at orogenic scale. The same approach can be applied to minerals preserved in stratigraphic records of rivers, although extracting reliable paleo-denudation rates from Ma-old archives can be limited by the target nuclide's half-life and by exposure to cosmic radiations after deposition. Slowly eroding landscapes, however, are characterized by the highest cosmogenic radionuclide concentrations; a condition that potentially allows pushing the method's limits further back in time, provided that independent constraints on the geological evolution are available. Here, we report 13-10 million-year-old paleo-denudation rates from northernmost Chile, the oldest 10Be-inferred rates ever reported. We find that at 13-10 Ma the western Andean Altiplano has been eroding at 1-10 m/Ma, consistent with modern paces in the same setting, and it experienced a period with rates above 10 m/Ma at ~11 Ma. We suggest that the background tectono-geomorphic state of the western margin of the Altiplano has remained stable since the mid-Miocene, whereas intensified runoff since ~11 Ma might explain the transient increase in denudation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA