Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 72(6): 566-569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38897954

RESUMO

Dihydrobenzofuran is an important skeleton for bioactive compounds and natural products. Hydroquinones can be easily modified into substituted hydroquinones, which effectively undergo oxidation to produce the corresponding benzoquinone derivatives. Benzoquinones are reactive electrophiles that are frequently utilized in coupling with olefins to dihydrobenzofurans. Herein, we report the one-pot oxidative coupling of hydroquinones bearing an electron-withdrawing group at the C2 position with olefins to dihydrobenzofurans in the presence of the Lewis acidic FeCl3 and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) oxidant. Furthermore, this method was applied to the oxidative coupling of N-electron-withdrawing group-substituted 4-aminophenol.


Assuntos
Alcenos , Benzofuranos , Hidroquinonas , Hidroquinonas/química , Hidroquinonas/síntese química , Benzofuranos/química , Benzofuranos/síntese química , Alcenos/química , Estrutura Molecular , Acoplamento Oxidativo , Compostos Férricos/química , Oxirredução , Cloretos/química , Benzoquinonas/química , Benzoquinonas/síntese química
2.
ChemMedChem ; : e202400201, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740557

RESUMO

Deuterated drugs (heavy drugs) have recently been spotlighted as a new modality for small-molecule drugs because the pharmacokinetics of pharmaceutical drugs can be enhanced by replacing C-H bonds with more stable C-D bonds at metabolic positions. Therefore, deuteration methods for drug candidates are a hot topic in medicinal chemistry. Among them, the H/D exchange reaction (direct transformation of C-H bonds to C-D bonds) is a useful and straightforward method for creating novel deuterated target molecules, and over 20 reviews on the synthetic methods related to H/D exchange reactions have been published in recent years. Although various deuterated drug candidates undergo clinical trials, approved deuterated drugs possess CD3 groups in the same molecule. However, less diversification, except for the CD3 group, is a problem for future medicinal chemistry. Recently, we developed various deuterated alkyl (dn-alkyl) sulfonium salts based on the H/D exchange reaction of the corresponding hydrogen form using D2O as an inexpensive deuterium source to introduce CD3, CH3CD2, and ArCH2CD2 groups into drug candidates. This concept summarises recent reviews related to H/D exchange reactions and novel reagents that introduce the CD3 group, and our newly developed electrophilic dn-alkyl reagents are discussed.

3.
Chemistry ; 30(36): e202304028, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38580616

RESUMO

The synthesis of enantiomerically pure tertiary alcohols is an important issue in organic synthesis of a range of pharmaceuticals including molecules such as the anti-HIV drug Efavirenz. A conceptually elegant approach to such enantiomers is the dynamic kinetic resolution of racemic tertiary alcohols, which, however, requires efficient racemization strategies. The racemization of tertiary alcohols is particularly challenging due to various side reactions that can occur because of their high tendency for elimination reactions. In the last few years, several complementary catalytic concepts for racemization of tertiary alcohols have been developed, characterized by efficient racemization and suppression of unwanted side-reactions. Besides resins bearing sulfonic acid moieties and a combination of boronic acid and oxalic acid as heterogeneous and homogeneous Brønsted-acids, respectively, immobilized oxovanadium and piperidine turned out to be useful catalysts. The latter two catalysts, which have already been applied to different types of substrates, also have proven good compatibility with lipase, thus leading to the first two examples of chemoenzymatic dynamic kinetic resolution of tertiary alcohols. In this review, the difficulties in racemizing tertiary alcohols are specifically described, and the recently developed complementary concepts to overcome these hurdles are summarized.

4.
Chembiochem ; : e202400082, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670922

RESUMO

Chiral tertiary alcohols are important organic compounds in science as well as in industry. However, their preparation in enantiomerically pure form is still a challenge due to their complex structure and steric hindrances compared with primary and secondary alcohols, so kinetic resolution could be an attractive approach.  Lipase A from Candida antarctica (CAL-A) has been shown to catalyze the enantioselective esterification of various tertiary alcohols with excellent enantioselectivity but low activity. Here we report a mutagenesis study by rational design to improve CAL-A activity against tertiary alcohols. Single mutants of CAL-A were selected, expressed, immobilized and screened for esterification of the tertiary alcohol 1,2,3,4-tetrahydronaphthalene-1-ol. A double mutant V278S+S429G showed a 1.5-fold higher reaction rate than that of the wild type CAL-A, while maintaining excellent enantioselectivity.

5.
J Mater Chem B ; 12(17): 4138-4147, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456552

RESUMO

Highly polar and charged molecules, such as oligonucleotides, face significant barriers in crossing the cell membrane to access the cytoplasm. To address this problem, we developed a light-triggered twistable tetraphenylethene (TPE) derivative, TPE-C-N, to facilitate the intracellular delivery of charged molecules through an endocytosis-independent pathway. The central double bond of TPE in TPE-C-N is planar in the ground state but becomes twisted in the excited state. Under light irradiation, this planar-to-twisted structural change induces continuous cell membrane disturbances. Such disturbance does not lead to permanent damage to the cell membrane. TPE-C-N significantly enhanced the intracellular delivery of negatively charged molecules under light irradiation when endocytosis was inhibited through low-temperature treatment, confirming the endocytosis-independent nature of this delivery method. We have successfully demonstrated that the TPE-C-N-mediated light-controllable method can efficiently promote the intracellular delivery of charged molecules, such as peptides and oligonucleotides, with molecular weights ranging from 1000 to 5000 Da.


Assuntos
Membrana Celular , Luz , Estilbenos , Humanos , Membrana Celular/metabolismo , Endocitose , Células HeLa , Oligonucleotídeos/química , Oligonucleotídeos/farmacologia , Sistemas de Liberação de Medicamentos
6.
Chem Pharm Bull (Tokyo) ; 72(2): 213-219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38382974

RESUMO

Nucleophilic deprotection of p-methoxybenzyl (PMB) [p-methoxyphenylmethyl (MPM)] ethers was developed using a heterogeneous oxovanadium catalyst V-MPS4 and a thiol nucleophile. The deprotection method had a wide reaction scope, including PMB ethers of primary, secondary, and tertiary alcohols bearing various functional groups. In addition, the PMB ether of an oxidation-labile natural product was successfully removed by V-MPS4 catalysis, while a common oxidative method of PMB deprotection afforded a complex mixture. The V-MPS4 catalyst was reusable up to six times without a significant loss in the product yield. The advantages of using the heterogeneous catalyst were further demonstrated by conducting the deprotection reaction in a continuous flow process, which resulted in a 2.7-fold higher catalyst turnover number and 60-fold higher turnover frequency compared to those of the corresponding batch reaction.


Assuntos
Éteres , Etil-Éteres , Catálise , Álcoois , Oxirredução
7.
Org Biomol Chem ; 22(14): 2734-2738, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38356415

RESUMO

The colorless solution of furan-2-yl bis(indolyl)methane (BIM) is newly revealed to work as a palladium (Pd2+) ion-selective chromogenic agent by turning orange. 5-(N-Methyl-N-phenyl-aminomethyl)-furan-2-yl BIM could be synthesized from 5-chloromethylfurfural as a biorenewable feedstock via one-pot and double functionalization, and a mixture of its solution and Pd2+ ions showed the highest absorbance at 465 nm in UV-Vis analysis. On the other hand, other metal ions (Cu2+, Cr2+, Cr3+, Fe2+, Fe3+, Ni2+, Zn2+, In2+, Pt2+, or Ce3+) exhibited no response.

8.
Chem Commun (Camb) ; 60(6): 678-681, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38165949

RESUMO

The first atroposelective Chan-Lam coupling for the synthesis of C-N axial enantiomers is reported with good yields and ee. MnO2 additive is crucial for the success of the coupling. The longstanding problem of the lack of enantioselective synthesis to make chiral C-N linked atropisomers is solved.

9.
RSC Med Chem ; 14(12): 2583-2592, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38107175

RESUMO

Although deuterium incorporation into pharmaceutical drugs is an attractive way to expand drug modalities, their physicochemical properties have not been sufficiently examined. This study focuses on examining the changes in physicochemical properties between flurbiprofen (FP) and flurbiprofen-d8 (FP-d8), which was successfully prepared by direct and multiple H/D exchange reactions at the eight aromatic C-H bonds of FP. Although the effect of deuterium incorporation was not observed between the crystal structures of FP and FP-d8, the melting point and heat of fusion of FP-d8 were lower than those of FP. Additionally, the solubility of FP-d8 increased by 2-fold compared to that of FP. Calculation of the interaction energy between FP/FP-d8 and water molecules using the multi-component density functional theory method resulted in increased solubility of FP-d8. These novel and valuable findings regarding the changes in physicochemical properties triggered by deuterium incorporation can contribute to the further development of deuterated drugs.

10.
Chem Pharm Bull (Tokyo) ; 71(10): 782-786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779080

RESUMO

Catechols possessing electron-withdrawing groups at the C3 position effectively underwent oxidative functionalization at the C4 position in the presence of phenyliodine(III) diacetate (PIDA) and heteroarene nucleophiles (e.g., indole, indazole, and benzotriazole) to produce the corresponding biaryl products. The PIDA-mediated oxidation of catechol derivatives afforded the ortho-benzoquinone intermediate, which subsequently underwent regioselective nucleophilic addition to the α,ß-unsaturated carbonyl moiety of ortho-benzoquinone using indole, indazole, and benzotriazole to give 4-substituted catechol derivatives in a one-pot manner. Notably, the nucleophilic substitution positions of indazole and benzotriazole were perfectly controlled. Additionally, the reaction using N-methylaniline as the nucleophile afforded a tertiary amine product.


Assuntos
Catecóis , Elétrons , Benzoquinonas , Estresse Oxidativo
11.
Angew Chem Int Ed Engl ; 62(48): e202311058, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37726202

RESUMO

The pharmacokinetics of pharmaceutical drugs can be improved by replacing C-H bonds with the more stable C-D bonds at the α-position to heteroatoms, which is a typical metabolic site for cytochrome P450 enzymes. However, the application of deuterated synthons is limited. Herein, we established a novel concept for preparing deuterated reagents for the successful synthesis of complex drug skeletons with deuterium atoms at the α-position to heteroatoms. (dn -Alkyl)diphenylsulfonium salts prepared from the corresponding nondeuterated forms using inexpensive and abundant D2 O as the deuterium source with a base, were used as electrophilic alkylating reagents. Additionally, these deuterated sulfonium salts were efficiently transformed into dn -alkyl halides and a dn -alkyl azide as coupling reagents and a dn -alkyl amine as a nucleophile. Furthermore, liver microsomal metabolism studies revealed deuterium kinetic isotope effects (KIE) in 7-(d2 -ethoxy)flavone. The present concept for the synthesis of deuterated reagents and the first demonstration of a KIE in a d2 -ethoxy group will contribute to drug discovery research based on deuterium chemistry.


Assuntos
Sistema Enzimático do Citocromo P-450 , Sais , Deutério/química , Cloreto de Sódio , Descoberta de Drogas
12.
Chem Commun (Camb) ; 59(81): 12100-12103, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37721453

RESUMO

All aromatic C-H bonds of triphenylphosphine (PPh3) were efficiently replaced by C-D bonds using Ru/C and Ir/C co-catalysts in 2-PrOH and D2O, an inexpensive deuterium source. Furthermore, non-radioactive and safe deuterium-incorporated Mito-Q (drug candidate) was prepared from deuterated PPh3 and used for the live-cell Raman imaging to evaluate the mitochondrial uptake.

13.
Chem Commun (Camb) ; 58(93): 12935-12938, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36321963

RESUMO

3-Methoxycarbonylcatechol effectively underwent two-way regiocontrolled coupling with indoles via an ortho-benzoquinone intermediate, resulting from phenyliodine(III) diacetate oxidation, to generate 4-adducts or 5-adducts with or without BF3·Et2O in a one-pot manner. DFT calculations confirmed the obtained regioselectivities.


Assuntos
Indóis , Estresse Oxidativo , Oxirredução
14.
Chemistry ; 28(60): e202202437, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36089534

RESUMO

Natural lipases typically recognize enantiomers of alcohols based on the size differences of substituents near the carbinol moiety and selectively react with the R enantiomers of secondary alcohols. Therefore, lipase-catalyzed dynamic kinetic resolution (DKR) of racemic secondary alcohols produces only R enantiomers. We report herein a method for obtaining S enantiomers by DKR of secondary 3-(trialkylsilyl)propargyl alcohols by using a well-known R-selective Pseudomonas fluorescens lipase in combination with a racemization catalyst VMPS4, in which the silyl group reverses the size relationship of substituents near the carbinol moiety. We have already reported R-selective DKR of the corresponding propargyl alcohols without substituents on the ethynyl terminal carbon, and the presence of an easily removable silyl group has enabled us to produce both enantiomers of propargyl alcohols in high chemical yields and with high enantiomeric excess. In addition, immobilization of the lipase on Celite was found to be important for achieving a high efficiency of the DKR.


Assuntos
Terra de Diatomáceas , Metanol , Estereoisomerismo , Álcoois , Lipase/metabolismo , Cinética , Catálise , Carbono
15.
Org Lett ; 24(19): 3510-3514, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35500272

RESUMO

A wide range of aryl boronic 1,1,2,2-tetraethylethylene glycol esters [ArB(Epin)s] were readily synthesized. Purifying aryl boronic esters by conventional silica gel chromatography is generally challenging; however, these introduced derivatives are easily purified on silica gel and isolated in excellent yields. We subjected the purified ArB(Epin) to Suzuki-Miyaura couplings, which provided higher yields of the desired biaryl products than those obtained using the corresponding aryl boronic acids or pinacol esters.

16.
Chem Pharm Bull (Tokyo) ; 70(5): 391-399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491196

RESUMO

The highly enantioselective lipase-catalyzed kinetic resolution (KR) of racemic C1-symmetric biaryl compounds including heterocyclic moieties, such as carbazole and dibenzofuran, has been achieved for the first time. This enzymatic esterification was accelerated by the addition of disodium carbonate while maintaining its high enantioselectivities, and was particularly effective for biaryls having N-substituted carbazole moieties. Furthermore, mesoporous silica-supported oxovanadium-catalyzed cross-dehydrogenative coupling of 3-hydroxycarbazole and 2-naphthol was followed by the lipase-catalyzed KR in one-pot to synthesize the optically active heterocyclic biaryl compounds with high optical purity.


Assuntos
Carbazóis , Lipase , Catálise , Cinética , Lipase/metabolismo , Estereoisomerismo
17.
J Pers Med ; 11(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34834512

RESUMO

In the past few years, we have demonstrated the efficacy of a nanoparticle system, super carbonate apatite (sCA), for the in vivo delivery of siRNA/miRNA. Intravenous injection of sCA loaded with small RNAs results in safe, high tumor delivery in mouse models. To further improve the efficiency of tumor delivery and avoid liver toxicity, we successfully developed an inorganic nanoparticle device (iNaD) via high-frequency ultrasonic pulverization combined with PEG blending during the production of sCA. Compared to sCA loaded with 24 µg of miRNA, systemic administration of iNaD loaded with 0.75 µg of miRNA demonstrated similar delivery efficiency to mouse tumors with little accumulation in the liver. In the mouse therapeutic model, iNaD loaded with 3 µg of the tumor suppressor small RNA MIRTX resulted in an improved anti-tumor effect compared to sCA loaded with 24 µg. Our findings on the bio-distribution and therapeutic effect of iNaD provide new perspectives for future nanomedicine engineering.

18.
J Am Chem Soc ; 143(29): 10853-10859, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34197100

RESUMO

In recent years, London dispersion interactions, which are the attractive component of the van der Waals potential, have been found to play an important role in controlling the regio- and/or stereoselectivity of various reactions. Particularly, the dispersion interactions between substrates and catalysts (or ligands) are dominant in various selective catalyzes. In contrast, repulsive steric interactions, rather than the attractive dispersion interactions, between bulky substituents are predominant in most of the noncatalytic reactions. Herein, we demonstrate the first example of London dispersion-controlled noncatalytic (2 + 2) cyclodimerization of substituted benzynes to selectively afford proximal biphenylenes in high yields and regioselectivities, depending on the extent of dispersion interactions in the substituents. This method can be applied for the synthesis of novel helical biphenylenes, which would be fascinating for chemists as these compounds are potential skeletons for ligands, catalysts, and medicines.

19.
J Org Chem ; 86(5): 3683-3696, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33522232

RESUMO

Ketene acetal derivatives, such as 1-alkoxyvinyl esters and O-silyl ketene acetals, belong to the category of O-substituted enols of esters, which easily react with various types of nucleophiles, Nu-H, under neutral conditions to give the corresponding acylated and silylated products in excellent yields only by evaporation of the generated volatile esters. Silyl ketene acetals can be easily synthesized by various simple procedures, whereas 1-alkoxyvinyl esters require an equimolar or catalytic amount of a mercury salt to synthesize them. This drawback prevented the advancement of the chemistry of 1-alkoxyvinyl esters. In 1993, we developed a useful synthetic method of 1-alkoxyvinyl esters using a small amount (0.5-1 mol %) of a ruthenium catalyst. Encouraged by this discovery, we subsequently developed various reactions and applied them to the synthesis of natural products. It is noteworthy that the stereoselective total synthesis of fredericamycin A was achieved by the combined use of these reactions. Macrocyclization was variously utilized for the synthesis of natural macrolides by two types of approaches: direct macrolactonization of α,ω-hydroxy acids or intermolecular esterification between an acid and alcohol followed by a ring-closure step. Additionally, several new reactions using 1-alkoxyvinyl esters or their analogs as key intermediates on the basis of our methods were recently reported. In this paper, we introduce our efforts from the synthesis of 1-alkoxyvinyl esters to the application such as natural product syntheses and recent advancements.


Assuntos
Acetais , Ésteres , Ácidos , Catálise , Esterificação
20.
RSC Adv ; 11(56): 35342-35350, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35493149

RESUMO

Cross-dehydrogenative coupling between 3-hydroxycarbazoles and 2-naphthols has been achieved by using a mesoporous silica-supported oxovanadium catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA