Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36799914

RESUMO

Precise control of the surface topographies of polymer materials is key to developing high-performance materials and devices for a wide variety of applications, such as optical displays, micro/nanofabrication, photonic devices, and microscale actuators. In particular, photocontrolled polymer surfaces, such as photoinduced surface relief, have been extensively studied mainly through photochemical mass transport. In this study, we propose a novel method triggering the mass transport by photopolymerization of liquid crystals with structured light and demonstrate the direct formation of microscale well and canal structures on the surface of polymer films. The wells and canals with depths of several micrometers and high aspect ratios, which are 10 times larger than those of previously reported structures, were found to be aligned in the center of non-irradiated areas. Furthermore, such well and canal structures can be arranged in two dimensions by designing light patterns. Real-time observations of canal structure formation reveal that anisotropic molecular diffusion during photopolymerization leads to a directed molecular alignment and subsequent surface structure formation. We believe that our proposed approach to designing microscale surface topographies has promising applications in advanced optical and mechanical devices.

2.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684774

RESUMO

Chiral nematic (N*) liquid crystal elastomers (LCEs) are suitable for fabricating stimuli-responsive materials. As crosslinkers considerably affect the N*LCE network, we investigated the effects of crosslinking units on the physical properties of N*LCEs. The N*LCEs were synthesized with different types of crosslinkers, and the relationship between the N*LC polymeric system and the crosslinking unit was investigated. The N*LCEs emit color by selective reflection, in which the color changes in response to mechanical deformation. The LC-type crosslinker decreases the helical twisting power of the N*LCE by increasing the total molar ratio of the mesogenic compound. The N*LCE exhibits mechano-responsive color changes by coupling the N*LC orientation and the polymer network, where the N*LCEs exhibit different degrees of pitch variation depending on the crosslinker. Moreover, the LC-type crosslinker increases the Young's modulus of N*LCEs, and the long methylene chains increase the breaking strain. An analysis of experimental results verified the effect of the crosslinkers, providing a design rationale for N*LCE materials in mechano-optical sensor applications.

3.
ACS Appl Mater Interfaces ; 13(19): 23049-23056, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33944546

RESUMO

Optical limiting is a phenomenon widely recognized as the potential application for a protector of human eyes and optical sensors from irradiation with lasers. However, a high optical limiting threshold and low flexibility have restricted such applications. Here, we report that oligothiophene-doped liquid crystals (LCs) function as a low-threshold optical limiter with deformability. Irradiation of dye-doped LCs with a continuous wave (CW) laser beam brings about the formation of diffraction rings, and the number of rings changes depending on the incident light intensity due to their photoinduced molecular reorientation. Utilizing such reorientation enables reversible optical limiting without additional multilayered optical components. In particular, an electric field application to a LC-based optical limiter decreases their optical limiting threshold from 2100 to 25 mW/cm2, and the threshold can be tuned by adjusting the applied voltage. Furthermore, the softness of LCs allows for the fabrication of the deformable optical limiter; optical limiting due to the molecular reorientation occurs even in largely bent states. The low-threshold and deformable optical limiter based on oligothiophene-doped LCs thus will enable one to develop the protector of eyes and optical sensors from glaring light-induced damage.

4.
Soft Matter ; 17(15): 4040-4046, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881047

RESUMO

Flexibility, viscoelasticity and stress-strain relation in bending polymeric films are key factors in designing mechanically durable flexible electronic devices and soft robots. However, bending hysteresis, which appears as a precursor phenomenon of fracture and fatigue, remains unclear; no one quantitatively evaluated a bending curvature causing hysteresis. Herein, we report the bending hysteresis of polymeric films used as common substrates in flexible electronics by precisely monitoring bending curvatures. By real-time measuring curvatures of films upon bending and subsequent unbending, we have successfully determined the curvatures that cause the hysteresis. These curvatures also depend on a film thickness. Furthermore, we revealed that the occurrence of bending hysteresis is explained by bending strains that have a nonlinear relation with internal stresses. This enables us to predict strain limits that cause the bending hysteresis, based on a stress-strain curve of polymeric films.

5.
Sci Adv ; 3(11): e1701610, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29152567

RESUMO

Hierarchical control of two-dimensional (2D) molecular alignment patterns over large areas is essential for designing high-functional organic materials and devices. However, even by the most powerful current methods, dye molecules that discolor and destabilize the materials need to be doped in, complicating the process. We present a dye-free alignment patterning technique, based on a scanning wave photopolymerization (SWaP) concept, that achieves a spatial light-triggered mass flow to direct molecular order using scanning light to propagate the wavefront. This enables one to generate macroscopic, arbitrary 2D alignment patterns in a wide variety of optically transparent polymer films from various polymerizable mesogens with sufficiently high birefringence (>0.1) merely by single-step photopolymerization, without alignment layers or polarized light sources. A set of 150,000 arrays of a radial alignment pattern with a size of 27.4 µm × 27.4 µm were successfully inscribed by SWaP, in which each individual pattern is smaller by a factor of 104 than that achievable by conventional photoalignment methods. This dye-free inscription of microscopic, complex alignment patterns over large areas provides a new pathway for designing higher-performance optical and mechanical devices.

6.
Nat Commun ; 7: 11156, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27040501

RESUMO

Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm(2) V(-1) s(-1) by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices.

7.
Angew Chem Int Ed Engl ; 53(35): 9246-50, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24986782

RESUMO

A dipalladium complex with a double-decker structure catalyzes ethylene-acrylate copolymerization to produce the branched polymer containing the acrylate units in the polymer chain, not at the branch terminus. The cooperation of the two palladium centers, which are fixed in a rigid framework of the macrocyclic ligand, is proposed to have a significant dinuclear effect on the copolymerization.

8.
Sci Rep ; 4: 5377, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24948462

RESUMO

Mechanical properties of flexible films, for example surface strain of largely bending films, are key to design of stretchable electronic devices, wearable biointegrated devices, and soft microactuators/robots. However, existing methods are mainly based on strain-gauge measurements that require miniaturized array sensors, lead wires, and complicated calibrations. Here we introduce a facile method, based on surface-labelled gratings, for two-dimensional evaluation of surface strains in largely bending films. With this technique, we demonstrate that soft-matter mechanics can be distinct from the mechanics of hard materials. In particular, liquid-crystalline elastomers may undergo unconventional bending in three dimensions, in which both the inner and outer surfaces of the bending film are compressed. We also show that this method can be applied to amorphous elastomeric films, which highlights the general importance of this new mechanical evaluation tool in designing soft-matter-based electronic/photonic as well as biointegrated materials.

9.
J Am Chem Soc ; 134(43): 18101-8, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23057606

RESUMO

Introducing substituents onto SWNT sidewalls increases their solubility and tunes their properties. Controlling the degree of functionalization is important because the addition of numerous functional groups on the sidewall degrades their intrinsic useful electronic properties. We examined the synthesis and characterization of sidewall-functionalized SWNTs in this study. The functionalized SWNTs ((1)R-SWNTs-(2)R) were prepared in a one-pot reaction of SWNTs with alkyllithium ((1)RLi) followed by alkyl bromide ((2)RBr). The functionalized SWNTs were characterized by the absorption and Raman spectroscopy and thermogravimetric analysis. Not only the total number of functional groups introduced on the SWNT sidewall (formula mass: (1)R = (2)R) but also the ratio of (2)R to (1)R in the functionalized SWNTs (formula mass: (1)R ≠ (2)R) having two different substituents were clarified using the relation between results of Raman spectroscopy and thermogravimetric analysis. Results show that the degree of functionalization of (2)R to (1)R in (1)R-SWNTs-(2)R can be well controlled by the bulkiness of the alkyl groups of (1)RLi and (2)RBr. Moreover, substituent effects of reductive alkylation and reductive silylation of SWNTs via Birch reduction were investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA