Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 98: 106486, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37352731

RESUMO

Water resource pollution by organic contaminants is an environmental issue of increasing concern. Here, sporopollenin/zinc oxide (SP/ZnO) was used as an environmentally friendly and durable catalyst for sonophotocatalytic treatment of three organic compounds: direct blue 25 (DB 25), levofloxacin (LEV), and dimethylphtalate (DMPh). The resulting catalyst had a 2.65 eV bandgap value and 9.81 m2/g surface area. The crystalline structure and functional groups of SP/ZnO were confirmed by X-ray diffraction (XRD) and Fourier transforms infrared spectroscopy (FTIR) analyses. After 120 min of the sonophotocatalysis, the degradation efficiencies of DB 25, LEV, and DMPh by SP/ZnO were 86.41, 75.88, and 62.54%, respectively, which were higher than that of the other investigated processes. The role of reactive oxygen species were investigated using various scavengers, enhancers, photoluminescence, and o-phenylenediamine. Owing to its stability, the catalyst exhibited good reusability after four consecutive cycles. In addition, the high integrity of the catalyst was confirmed by scanning electron microscopy (SEM), XRD, and FTIR analyses. After four consecutive examinations, the leaching of zinc in the aqueous phase was < 3 mg/L. Moreover, gas chromatography-mass spectrometry (GC-MS) analyses indicated that the contaminants were initially converted into cyclic compounds and then into aliphatic compounds, including carboxylic acids and animated products. Thus, this study synthesized an environmentally friendly and reusable SP/ZnO composite for the degradation of various organic pollutants using a sonophotocatalytic process.

2.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770670

RESUMO

In this article, studies on organic solubility and stability in subcritical water reported during the past 25 years have been reviewed. Data on the solubility and decomposition of organic compounds in subcritical water, a green solvent, are needed in environmental remediation, chemistry, chemical engineering, medicine, polymer, food, agriculture, and many other fields. For solubility studies, the experimental systems used to measure solubility, mathematical equations derived and applied for the modeling of the experimentally determined solubility data, and the correlation between the predicated and experimental data have been summarized and discussed. This paper also reviewed organic decomposition under subcritical water conditions. In general, the solubility of organics is significantly enhanced with increasing water temperature. Likewise, the percentage of organic decomposition also increases with higher temperature.

3.
Environ Res ; 208: 112736, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35041815

RESUMO

The degradation of emerging contaminant coumarin was separately investigated in anodic, electro-Fenton and subcritical water oxidation processes. With respect to the anodic and electro-Fenton oxidation, the influence of constant current, treatment time and initial concentration of coumarin was studied. Regarding subcritical water oxidation, the effect of the oxidant concentration, temperature, treatment time and initial coumarin concentration was investigated. In anodic and electro-Fenton oxidation processes, coumarin degradation proceeded in a similar manner, achieving 99% degradation, after 180 min at a constant current of 200 mA. In both set-ups, further increasing the applied current lowered the degradation efficiency due to the formation of by-products and the increasing occurrence of side-reactions. The highest degradation of 88% was achieved in subcritical conditions, specifically at 200 °C, using 150 mM H2O2 and after 37.5 min of treatment. Under subcritical conditions, temperature was the most prominent parameter, followed by the H2O2 concentration. Under all methodologies, increasing treatment time had a small positive effect on coumarin degradation, indicating that time is not the most influential parameter. A comparison of the three methodologies in terms of performance as well as energy consumption and simplicity of operation highlighted the advantages of subcritical water oxidation.


Assuntos
Poluentes Químicos da Água , Água , Cumarínicos , Eletrodos , Peróxido de Hidrogênio , Oxirredução , Poluentes Químicos da Água/análise
4.
Molecules ; 26(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34833951

RESUMO

In the present study, a novel heterogeneous catalyst was successfully fabricated through the decoration of palladium nanoparticles on the surface of designed Fe3O4-coffee waste composite (Pd-Fe3O4-CWH) for the catalytic reduction of nitroarenes. Various characterization techniques such as XRD, FE-SEM and EDS were used to establish its nano-sized chemical structure. It was determined that Pd-Fe3O4-CWH is a useful nanocatalyst, which can efficiently reduce various nitroarenes, including 4-nitrobenzoic acid (4-NBA), 4-nitroaniline (4-NA), 4-nitro-o-phenylenediamine (4-NPD), 2-nitroaniline (2-NA) and 3-nitroanisole (3-NAS), using NaBH4 in aqueous media and ambient conditions. Catalytic reactions were monitored with the help of high-performance liquid chromatography. Additionally, Pd-Fe3O4-CWH was proved to be a reusable catalyst by maintaining its catalytic activity through six successive runs. Moreover, the nanocatalyst displayed a superior catalytic performance compared to other catalysts by providing a shorter reaction time to complete the reduction in nitroarenes.

5.
Chemosphere ; 277: 130307, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33774244

RESUMO

Ibuprofen (IBP) is an emerging environmental contaminant having low aqueous solubility which negatively affects the application of advanced oxidation and adsorption processes. It was determined that as the temperature increased to 473 K, the mole fraction solubility increased considerably from 0.02 × 10-3 to 212.88 × 10-3 (10600-fold). Calculation of the thermodynamic properties indicated an endothermic process, ΔsolH > 0, with relatively high ΔsolS values. Spectroscopic, thermal and chromatographic analyses established the IBP stability at subcritical conditions. In the second part of the study, the degradation of IBP in H2O2-modified subcritical was studied and the effect of each process variable was investigated. The optimum degradation of 88% was reached at an IBP concentration of 15 mg L-1, temperature of 250 °C, 105 min treatment time and 250 mM H2O2. The process was optimized by response surface methodology and a mathematical model was proposed and validated. Temperature was determined as the most influential parameter, followed by H2O2 concentration. At temperatures higher than 230 °C, a small but noticeable reduction in degradation % suggested that the OH· radicals are consumed at a higher rate than they are produced, through side reactions with other radicals and/or IBP by-products. Finally, potential by-products were determined by gas chromatographic-mass spectrometric analysis and potential by-products were proposed.


Assuntos
Ibuprofeno , Poluentes Químicos da Água , Peróxido de Hidrogênio , Solubilidade , Temperatura , Água , Poluentes Químicos da Água/análise
6.
Ultrason Sonochem ; 48: 349-361, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30080560

RESUMO

ZrO2-pumice and ZrO2-tuff nanocomposites were synthesized via a modified sol-gel method and used as efficient catalysts for sonocatalytic degradation of rifampin (RIF). The physico-chemical properties of the prepared catalysts were examined using XRF, SEM, EDX, FT-IR and BET analyses and compared to pure pumice and tuff samples. Subsequently, the efficacy of catalysts in degradation of RIF was assessed under various experimental conditions. Both ZrO2-pumice and ZrO2-tuff (1.5 g L-1) exhibited promising catalytic activity for sonocatalytic degradation of RIF at its initial concentration of 20 mg L-1, natural pH and under ultrasonic irradiation power of 300 W. In this condition, about 95% and 83% of RIF was removed through US/ZrO2-pumice and US/ZrO2-tuff processes, respectively. Furthermore, the influence of the addition of a number of scavengers, enhancers and gases on the degradation of RIF was studied. The pronounced degradation effectiveness of the catalysts under ultrasound irradiation could be assigned to their synergetic ability to produce reactive species and subsequent radical reactions. The intermediate products formed in the solution from degradation of RIF were also identified and a decomposition pathway was proposed using GC-MS, COD, TOC and IC analyses.

7.
Ultrason Sonochem ; 39: 120-128, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28732928

RESUMO

TiO2-biochar (TiO2-BC) nanocomposite was synthesized by sol-gel method. The characteristics of the prepared nanocomposite were examined using X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption analysis. The performance of synthesized TiO2-BC nanocomposite as efficient sonocatalyst was studied for the degradation of Reactive Blue 69 (RB69). Sonocatalytic degradation of RB69 in the presence of TiO2-BC nanocomposite could be explained by the mechanisms of hot spots and sonoluminescence. The optimized values for main operational parameters were determined as pH of 7, TiO2-BC dosage of 1.5g/L, RB69 initial concentration of 20mg/L and ultrasonic power of 300W. Furthermore, the effect of OH, h+ and O2- scavengers on the RB69 degradation efficiency was studied. Gas chromatography-mass spectroscopy analysis was used to identify intermediate compounds formed during the RB69 degradation. The results of repeated applications of TiO2-BC in the sonocatalytic process verified its stability in long-term usage.

8.
Ultrason Sonochem ; 39: 540-549, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28732979

RESUMO

ZrO2-biochar (ZrO2-BC) nanocomposite was prepared by a modified sonochemical/sol-gel method. The physicochemical properties of the prepared nanocomposite were evaluated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray fluorescence, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller model. The sonocatalytic performance of ZrO2-BC was investigated in sonochemical degradation of Reactive Yellow 39 (RY39). The high observed sonocatalytic activity of the ZrO2-BC sample could be interpreted by the mechanisms of sonoluminescence and hot spots. Parameters including ZrO2-BC dosage, solution pH, initial RY39 concentration and ultrasonic power were selected as the main operational parameters and their influence on RY39 degradation efficiency was examined. A 96.8% degradation efficiency was achieved with a ZrO2-BC dosage of 1.5g/L, pH of 6, initial RY39 concentration of 20mg/L and ultrasonic power of 300W. In the presence of OH radical scavengers, RY39 degradation was significantly inhibited, providing evidence for the key role of hydroxyl radicals in the process. The sonodegradation intermediates were identified using gas chromatography-mass spectroscopy and the possible decomposition route was proposed.

9.
Ultrason Sonochem ; 35(Pt A): 72-80, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27637143

RESUMO

The Fe3O4-loaded coffee waste hydrochar (Fe3O4-CHC) was synthesized using a simple precipitation method. The as-prepared adsorbent was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FT-IR). The EDX analysis indicated the presence of Fe in the structure of Fe3O4-CHC. The specific surface area of hydrochar increased from 17.2 to 34.7m2/g after loading of Fe3O4 nanoparticles onto it. The prepared Fe3O4-CHC was used for removal of Acid Red 17 (AR17) through ultrasound-assisted process. The decolorization efficiency decreased from 100 to 74% with the increase in initial dye concentration and from 100 to 91 and 85% in the presence of NaCl and Na2SO4, respectively. The synthesized Fe3O4-CHC exhibited good stability in the repeated adsorption-desorption cycles. The high correlation coefficient (R2=0.997) obtained from Langmuir model indicated that physical and monolayer adsorption of dye molecules occurred on the Fe3O4-CHC surface. Furthermore, the by-products generated through the degradation of AR17 was identified by gas chromatography-mass spectrometry analysis.


Assuntos
Compostos Azo/isolamento & purificação , Café/química , Óxido Ferroso-Férrico/química , Nanopartículas/química , Ondas Ultrassônicas , Resíduos/análise , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Compostos Azo/química , Compostos de Potássio/química , Cloreto de Sódio/química , Sulfatos/química , Poluentes Químicos da Água/química
10.
J Chromatogr Sci ; 54(7): 1187-92, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27060112

RESUMO

Pure water was used as the eluent for separation of coumarin, vanillin and ethyl vanillin at temperatures ranging from 100 to 200°C using a homemade subcritical water chromatography (SBWC) system. Chromatographic separations were performed on five commercial columns including XTerra MS C18, XBridge C18, Zorbax RRHD Eclipse Plus, Zorbax SB-Phenyl and Zorbax SB-C18 columns. The retention time of all three solutes decreased with increasing water temperature. The shortest retention time among all acceptable separations, less than 4 min, was achieved on the Zorbax SB-C18 column at 200°C. While separations on the XTerra MS C18 column resulted in fronting peaks and a degradation peak from ethyl vanillin on the Zorbax RRHD Eclipse Plus column was observed, all three other columns yielded reasonable separations under SBWC conditions. In addition to separation of the standard test mixture, separation of coumarin contained in a skincare cream sample was also carried out using SBWC.


Assuntos
Benzaldeídos/isolamento & purificação , Cromatografia/métodos , Cumarínicos/isolamento & purificação , Química Verde , Água/química , Cromatografia/instrumentação , Humanos , Creme para a Pele/química , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA