Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Med Imaging Graph ; 115: 102386, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718562

RESUMO

A late post-traumatic seizure (LPTS), a consequence of traumatic brain injury (TBI), can potentially evolve into a lifelong condition known as post-traumatic epilepsy (PTE). Presently, the mechanism that triggers epileptogenesis in TBI patients remains elusive, inspiring the epilepsy community to devise ways to predict which TBI patients will develop PTE and to identify potential biomarkers. In response to this need, our study collected comprehensive, longitudinal multimodal data from 48 TBI patients across multiple participating institutions. A supervised binary classification task was created, contrasting data from LPTS patients with those without LPTS. To accommodate missing modalities in some subjects, we took a two-pronged approach. Firstly, we extended a graphical model-based Bayesian estimator to directly classify subjects with incomplete modality. Secondly, we explored conventional imputation techniques. The imputed multimodal information was then combined, following several fusion and dimensionality reduction techniques found in the literature, and subsequently fitted to a kernel- or a tree-based classifier. For this fusion, we proposed two new algorithms: recursive elimination of correlated components (RECC) that filters information based on the correlation between the already selected features, and information decomposition and selective fusion (IDSF), which effectively recombines information from decomposed multimodal features. Our cross-validation findings showed that the proposed IDSF algorithm delivers superior performance based on the area under the curve (AUC) score. Ultimately, after rigorous statistical comparisons and interpretable machine learning examination using Shapley values of the most frequently selected features, we recommend the two following magnetic resonance imaging (MRI) abnormalities as potential biomarkers: the left anterior limb of internal capsule in diffusion MRI (dMRI), and the right middle temporal gyrus in functional MRI (fMRI).


Assuntos
Biomarcadores , Lesões Encefálicas Traumáticas , Aprendizado de Máquina , Neuroimagem , Humanos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/complicações , Neuroimagem/métodos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Epilepsia Pós-Traumática/diagnóstico por imagem , Epilepsia Pós-Traumática/etiologia , Imagem Multimodal/métodos , Convulsões/diagnóstico por imagem , Teorema de Bayes , Pessoa de Meia-Idade
2.
Artigo em Inglês | MEDLINE | ID: mdl-38498738

RESUMO

Transcranial magnetic stimulation (TMS) is often applied to the motor cortex to stimulate a collection of motor evoked potentials (MEPs) in groups of peripheral muscles. The causal interface between TMS and MEP is the selective activation of neurons in the motor cortex; moving around the TMS 'spot' over the motor cortex causes different MEP responses. A question of interest is whether a collection of MEP responses can be used to identify the stimulated locations on the cortex, which could potentially be used to then place the TMS coil to produce chosen sets of MEPs. In this work we leverage our previous report on a 3D convolutional neural network (CNN) architecture that predicted MEPs from the induced electric field, to tackle an inverse imaging task in which we start with the MEPs and estimate the stimulated regions on the motor cortex. We present and evaluate five different inverse imaging CNN architectures, both conventional and generative, in terms of several measures of reconstruction accuracy. We found that one architecture, which we propose as M2M-InvNet, consistently achieved the best performance.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Músculo Esquelético/fisiologia , Potencial Evocado Motor/fisiologia , Neurônios , Eletromiografia/métodos
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1834-1838, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086469

RESUMO

For physicians to make rapid clinical decisions for patients with congestive heart failure, the assessment of pulmonary edema severity in chest radiographs is vital. Although deep learning has shown promise in detecting the presence or absence or discrete grades of severity, of such edema, prediction of continuous-valued severity yet remains a challenge. Here, we propose PENet: Siamese convolutional neural networks to assess the continuous spectrum of severity of lung edema from chest radiographs. We present different modes of implementing this network and demonstrate that our best model outperforms that of earlier work (mean AUC of 0.91 over 0.87), while using only 1/16-th the dimension of input images and 1/69-th the size of training data, thus also saving expensive computation.


Assuntos
Edema Pulmonar , Humanos , Redes Neurais de Computação , Edema Pulmonar/diagnóstico por imagem , Radiografia , Radiografia Torácica/métodos , Raios X
4.
Comput Diffus MRI ; 13006: 133-143, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37489155

RESUMO

Traumatic brain injury (TBI) is a serious condition, potentially causing seizures and other lifelong disabilities. Patients who experience at least one seizure one week after TBI (late seizure) are at high risk for lifelong complications of TBI, such as post-traumatic epilepsy (PTE). Identifying which TBI patients are at risk of developing seizures remains a challenge. Although magnetic resonance imaging (MRI) methods that probe structural and functional alterations after TBI are promising for biomarker detection, physical deformations following moderate-severe TBI present problems for standard processing of neuroimaging data, complicating the search for biomarkers. In this work, we consider a prediction task to identify which TBI patients will develop late seizures, using fractional anisotropy (FA) features from white matter tracts in diffusion-weighted MRI (dMRI). To understand how best to account for brain lesions and deformations, four preprocessing strategies are applied to dMRI, including the novel application of a lesion normalization technique to dMRI. The pipeline involving the lesion normalization technique provides the best prediction performance, with a mean accuracy of 0.819 and a mean area under the curve of 0.785. Finally, following statistical analyses of selected features, we recommend the dMRI alterations of a certain white matter tract as a potential biomarker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA