Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38475310

RESUMO

The effect of surface modification by an arc discharge plasma in a nitrogen flow with treatment durations of 5 and 10 min on the physicochemical properties and biocompatibility of the surface of composites based on polylactic acid and hydroxyapatite (PLA/HA) with different mass ratios (80/20, 70/30, 60/40) has been investigated. The aim of this work was to show the correlation between the changes of the physicochemical characteristics (chemical compound, morphology, wettability) of the surface layer of the PLA/HA composites and the cell viability (macrophages) in the presence of the plasma-modified materials. The dependence of alterations of the functional properties (wettability, biocompatibility) on the change in the chemical composition under the plasma exposure has been established. The chemical composition was studied using X-ray photoelectron spectroscopy (XPS), the surface morphology was researched with scanning electron microscopy (SEM), and the wettability of the composite's surface was analyzed by measuring the contact angle and surface energy calculation. In addition, the viability of macrophages was investigated when the macrophages from three donors interacted with a modified PLA/HA surface. It was found that the formation of the new functional groups, -C-N and N-C=O/C=O, improves the wettability of the surface of the composites and promotes the viability of macrophages in the presence of the composite materials. The fundamental principles for obtaining promising materials with the required properties for eliminating bone defects have been created.

2.
Polymers (Basel) ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631437

RESUMO

The effect of low-temperature arc discharge plasma treatment in a nitrogen atmosphere on the modification of the physicochemical properties of PLA-based scaffolds was studied. In addition, the cellular-mediated immune response when macrophages of three donors interact with the modified surfaces of PLA-based scaffolds was investigated. PLA surface carbonization, accompanied by a carbon atomic concentration increase, was revealed to occur because of plasma treatment. Nitrogen plasma significantly influenced the PLA wettability characteristics, namely, the hydrophilicity and lipophilicity were improved, as well as the surface energy being raised. The viability of cells in the presence of the plasma-modified PLA scaffolds was evaluated to be higher than that of the initial cells.

3.
Rev Sci Instrum ; 91(1): 013326, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012632

RESUMO

The development of the method of high-intensity implantation of low-energy ions requires the design of an efficient system for generating high-intensity ion beams of various elements with a current density of tens and hundreds of milliamperes per square centimeter with ion energies not exceeding some kiloelectronvolt. This paper considers the regularities of formation of high-intensity beams of nitrogen ions and argon and mixed beams of argon and hydrogen ions in spherical and cylindrical grid systems with ballistic focusing of the ion beam. The studies were carried out with the plasma-immersion formation of repetitively pulsed ion beams with duration from units to hundreds of microseconds and a pulse frequency of up to 105 pulses/s with negative bias potentials in the range from 0.6 to 3 kV. The possibility of stable formation of gas ion beams with an ion current density of up to 0.7 A/cm2 is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA