Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38541461

RESUMO

Samples of ZrO2 ceramics with different concentrations of impurity titanium ions were synthesized by mixing zirconium and titanium oxide powders in different mass ratios. The X-ray diffraction analysis was used to determine the phase composition, lattice parameters, and crystallite size of the ceramics with varying dopant concentrations. Upon irradiation of the samples with 220 MeV Xe ions to a fluence of 1010 ions/cm2, a decrease in the intensity of the pulsed cathodoluminescence band at 2.5 eV was observed. Additionally, ion irradiation resulted in the emergence of a new thermoluminescence peak at 450-650 K attributed to radiation-induced traps of charge carriers. Further analysis revealed that the thermoluminescence curves of samples irradiated with electrons and ions comprise a superposition of several elementary peaks. Notably, a complex non-monotonic dependence of cathodo- and thermoluminescence intensity on titanium concentration was observed, suggesting the influence of concentration quenching and the presence of tunneling transitions.

2.
Materials (Basel) ; 15(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500120

RESUMO

The ESR spectra of nanostructured samples of monoclinic ZrO2 irradiated by electrons with energies of 130 keV, 10 MeV, and by a beam of Xe ions (220 MeV) have been studied. It has been established that irradiation of samples with electrons (10 MeV) and ions leads to the formation of radiation-induced F+ centers in them. Thermal destruction of these centers is observed in the temperature range of 375-550 K for electron-irradiated and 500-700 K for ion-irradiated samples. It is shown that the decrease in the concentration of F+ centers is associated with the emptying of traps responsible for thermoluminescence (TL) peaks in the specified temperature range. In the samples irradiated with an ion beam, previously unidentified paramagnetic centers with g = 1.963 and 1.986 were found, the formation of which is likely to involve Zr3+ ions and oxygen vacancies. Thermal destruction of these centers occurs in the temperature range from 500 to 873 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA