Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(51): 110764-110778, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37794227

RESUMO

In this article, binary oxide ZnCo2O4 nanoparticles (NPs) have been developed on reduced graphene oxide surface by simple reflux condensation method. The physicochemical characteristics of the synthesized nanocomposite were computed using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and UV-Visible spectroscopy. The average size of ZnCo2O4 NPs is found to be about 9 nm. The synthesized nanocomposite was found to be an extremely efficient catalyst for reduction of 4-nitrophenol (4-NP) to produce 4-aminophenol (4-AP) and it is exhibited that about 98% 4-nitrophenol can be reduced in only 20 min. The nanocomposite behaves as supercapacitor due to possessing the specific capacitance value up to 609 F/g and excellent capacitance retention over 1000 cycles. The Brunauer-Emmett-Teller (BET) surface area analysis has been conducted to evaluate surface area and pore size of the synthesized material. The antimicrobial activity of this nanocomposite was performed against bacterial strains of Escherichia coli (E. coli), Bacillus subtilis (B. subtilis), and Staphylococcus aureus (S. aureus) and it is noticed to be a good antimicrobial agent against different bacterial strains.


Assuntos
Escherichia coli , Nanocompostos , Staphylococcus aureus , Nanocompostos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA