Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Immunity ; 57(9): 2216-2231.e11, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39151426

RESUMO

Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions. Here, we developed a method for rapid isolation of pure and intact phagosomes from human pluripotent stem cell-derived microglia under various in vitro conditions, and from human brain biopsies, for unbiased multiomic analysis. Phagosome profiling revealed that microglial phagosomes were equipped to sense minute changes in their environment and were highly dynamic. We detected proteins involved in synapse homeostasis, or implicated in brain pathologies, and identified the phagosome as the site where quinolinic acid was stored and metabolized for de novo nicotinamide adenine dinucleotide (NAD+) generation in the cytoplasm. Our findings highlight the central role of phagosomes in microglial functioning in the healthy and diseased brain.


Assuntos
Microglia , Fagocitose , Fagossomos , Humanos , Microglia/metabolismo , Fagossomos/metabolismo , Encéfalo/metabolismo , Encéfalo/citologia , Células Cultivadas , Células-Tronco Pluripotentes/metabolismo , Proteômica/métodos
2.
Cell Rep ; 43(9): 114682, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39207899

RESUMO

Signaling-dependent changes in protein phosphorylation are critical to enable coordination of transcription and metabolism during macrophage activation. However, the role of acetylation in signal transduction during macrophage activation remains obscure. Here, we identify the redox signaling regulator peroxiredoxin 1 (PRDX1) as a substrate of the lysine acetyltransferase MOF. MOF acetylates PRDX1 at lysine 197, preventing hyperoxidation and thus maintaining its activity under stress. PRDX1 K197ac responds to inflammatory signals, decreasing rapidly in mouse macrophages stimulated with bacterial lipopolysaccharides (LPSs) but not with interleukin (IL)-4 or IL-10. The LPS-induced decrease of PRDX1 K197ac elevates cellular hydrogen peroxide accumulation and augments ERK1/2, but not p38 or AKT, phosphorylation. Concomitantly, diminished PRDX1 K197ac stimulates glycolysis, potentiates H3 serine 28 phosphorylation, and ultimately enhances the production of pro-inflammatory mediators such as IL-6. Our work reveals a regulatory role for redox protein acetylation in signal transduction and coordinating metabolic and transcriptional programs during inflammatory macrophage activation.


Assuntos
Lipopolissacarídeos , Ativação de Macrófagos , Macrófagos , Peroxirredoxinas , Animais , Acetilação , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Camundongos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Fosforilação , Inflamação/metabolismo , Inflamação/patologia , Humanos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Histona Acetiltransferases/metabolismo , Interleucina-6/metabolismo , Glicólise , Transdução de Sinais , Peróxido de Hidrogênio/metabolismo
3.
Cell Rep ; 43(7): 114456, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990722

RESUMO

The rearrangement and expression of the immunoglobulin µ heavy chain (Igh) gene require communication of the intragenic Eµ and 3' regulatory region (RR) enhancers with the variable (VH) gene promoter. Eµ binding of the transcription factor YY1 has been implicated in enhancer-promoter communication, but the YY1 protein network remains obscure. By analyzing the comprehensive proteome of the 1-kb Eµ wild-type enhancer and that of Eµ lacking the YY1 binding site, we identified the male-specific lethal (MSL)/MOF complex as a component of the YY1 protein network. We found that MSL2 recruitment depends on YY1 and that gene knockout of Msl2 in primary pre-B cells reduces µ gene expression and chromatin looping of Eµ to the 3' RR enhancer and VH promoter. Moreover, Mof heterozygosity in mice impaired µ expression and early B cell differentiation. Together, these data suggest that the MSL/MOF complex regulates Igh gene expression by augmenting YY1-mediated enhancer-promoter communication.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Fator de Transcrição YY1 , Animais , Masculino , Camundongos , Diferenciação Celular , Elementos Facilitadores Genéticos/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Feminino
4.
Nature ; 630(8016): 312-314, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840003

Assuntos
Animais , Humanos , Camundongos
5.
Cell ; 187(7): 1701-1718.e28, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38503283

RESUMO

Biomolecules incur damage during stress conditions, and damage partitioning represents a vital survival strategy for cells. Here, we identified a distinct stress granule (SG), marked by dsRNA helicase DHX9, which compartmentalizes ultraviolet (UV)-induced RNA, but not DNA, damage. Our FANCI technology revealed that DHX9 SGs are enriched in damaged intron RNA, in contrast to classical SGs that are composed of mature mRNA. UV exposure causes RNA crosslinking damage, impedes intron splicing and decay, and triggers DHX9 SGs within daughter cells. DHX9 SGs promote cell survival and induce dsRNA-related immune response and translation shutdown, differentiating them from classical SGs that assemble downstream of translation arrest. DHX9 modulates dsRNA abundance in the DHX9 SGs and promotes cell viability. Autophagy receptor p62 is activated and important for DHX9 SG disassembly. Our findings establish non-canonical DHX9 SGs as a dedicated non-membrane-bound cytoplasmic compartment that safeguards daughter cells from parental RNA damage.


Assuntos
RNA , Grânulos de Estresse , Citoplasma , RNA Mensageiro/genética , Estresse Fisiológico , Humanos , Células HeLa
6.
Nature ; 624(7990): 173-181, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030723

RESUMO

In diploid organisms, biallelic gene expression enables the production of adequate levels of mRNA1,2. This is essential for haploinsufficient genes, which require biallelic expression for optimal function to prevent the onset of developmental disorders1,3. Whether and how a biallelic or monoallelic state is determined in a cell-type-specific manner at individual loci remains unclear. MSL2 is known for dosage compensation of the male X chromosome in flies. Here we identify a role of MSL2 in regulating allelic expression in mammals. Allele-specific bulk and single-cell analyses in mouse neural progenitor cells revealed that, in addition to the targets showing biallelic downregulation, a class of genes transitions from biallelic to monoallelic expression after MSL2 loss. Many of these genes are haploinsufficient. In the absence of MSL2, one allele remains active, retaining active histone modifications and transcription factor binding, whereas the other allele is silenced, exhibiting loss of promoter-enhancer contacts and the acquisition of DNA methylation. Msl2-knockout mice show perinatal lethality and heterogeneous phenotypes during embryonic development, supporting a role for MSL2 in regulating gene dosage. The role of MSL2 in preserving biallelic expression of specific dosage-sensitive genes sets the stage for further investigation of other factors that are involved in allelic dosage compensation in mammalian cells, with considerable implications for human disease.


Assuntos
Alelos , Regulação da Expressão Gênica , Ubiquitina-Proteína Ligases , Animais , Feminino , Masculino , Camundongos , Metilação de DNA , Mecanismo Genético de Compensação de Dose , Desenvolvimento Embrionário , Elementos Facilitadores Genéticos , Haploinsuficiência , Histonas/metabolismo , Camundongos Knockout , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Nat Metab ; 5(11): 1931-1952, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813994

RESUMO

Reversible acetylation of mitochondrial proteins is a regulatory mechanism central to adaptive metabolic responses. Yet, how such functionally relevant protein acetylation is achieved remains unexplored. Here we reveal an unprecedented role of the MYST family lysine acetyltransferase MOF in energy metabolism via mitochondrial protein acetylation. Loss of MOF-KANSL complex members leads to mitochondrial defects including fragmentation, reduced cristae density and impaired mitochondrial electron transport chain complex IV integrity in primary mouse embryonic fibroblasts. We demonstrate COX17, a complex IV assembly factor, as a bona fide acetylation target of MOF. Loss of COX17 or expression of its non-acetylatable mutant phenocopies the mitochondrial defects observed upon MOF depletion. The acetylation-mimetic COX17 rescues these defects and maintains complex IV activity even in the absence of MOF, suggesting an activatory role of mitochondrial electron transport chain protein acetylation. Fibroblasts from patients with MOF syndrome who have intellectual disability also revealed respiratory defects that could be restored by alternative oxidase, acetylation-mimetic COX17 or mitochondrially targeted MOF. Overall, our findings highlight the critical role of MOF-KANSL complex in mitochondrial physiology and provide new insights into MOF syndrome.


Assuntos
Fibroblastos , Mitocôndrias , Humanos , Animais , Camundongos , Acetilação , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Transporte de Cobre/metabolismo
8.
Sci Adv ; 9(34): eadh5598, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624894

RESUMO

Members of the NSL histone acetyltransferase complex are involved in multiorgan developmental syndromes. While the NSL complex is known for its importance in early development, its role in fully differentiated cells remains enigmatic. Using a kidney-specific model, we discovered that deletion of NSL complex members KANSL2 or KANSL3 in postmitotic podocytes led to catastrophic kidney dysfunction. Systematic comparison of two primary differentiated cell types reveals the NSL complex as a master regulator of intraciliary transport genes in both dividing and nondividing cells. NSL complex ablation led to loss of cilia and impaired sonic hedgehog pathway in ciliated fibroblasts. By contrast, nonciliated podocytes responded with altered microtubule dynamics and obliterated podocyte functions. Finally, overexpression of wild-type but not a double zinc finger (ZF-ZF) domain mutant of KANSL2 rescued the transcriptional defects, revealing a critical function of this domain in NSL complex assembly and function. Thus, the NSL complex exhibits bifurcation of functions to enable diversity of specialized outcomes in differentiated cells.


Assuntos
Núcleo Celular , Proteínas Hedgehog , Proteínas Hedgehog/genética , Regulação da Expressão Gênica , Diferenciação Celular/genética , Fibroblastos
9.
Life Sci Alliance ; 6(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37399316

RESUMO

The NSL complex is a transcriptional activator. Germline-specific knockdown of NSL complex subunits NSL1, NSL2, and NSL3 results in reduced piRNA production from a subset of bidirectional piRNA clusters, accompanied by widespread transposon derepression. The piRNAs most transcriptionally affected by NSL2 and NSL1 RNAi map to telomeric piRNA clusters. At the chromatin level, these piRNA clusters also show decreased levels of H3K9me3, HP1a, and Rhino after NSL2 depletion. Using NSL2 ChIP-seq in ovaries, we found that this protein specifically binds promoters of telomeric transposons HeT-A, TAHRE, and TART Germline-specific depletion of NSL2 also led to a reduction in nuclear Piwi in nurse cells. Our findings thereby support a role for the NSL complex in promoting the transcription of piRNA precursors from telomeric piRNA clusters and in regulating Piwi levels in the Drosophila female germline.


Assuntos
Proteínas de Drosophila , RNA de Interação com Piwi , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Drosophila/genética , Telômero/genética , Telômero/metabolismo
10.
Curr Biol ; 33(8): R286-R287, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37098326

RESUMO

Q&A with Asifa Akhtar who studies histone acetylation and genome regulation.


Assuntos
Genoma , Histonas , Histonas/genética , Histonas/metabolismo , Acetilação
12.
Nat Rev Mol Cell Biol ; 23(5): 329-349, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35042977

RESUMO

Lysine acetylation is a widespread and versatile protein post-translational modification. Lysine acetyltransferases and lysine deacetylases catalyse the addition or removal, respectively, of acetyl groups at both histone and non-histone targets. In this Review, we discuss several features of acetylation and deacetylation, including their diversity of targets, rapid turnover, exquisite sensitivity to the concentrations of the cofactors acetyl-CoA, acyl-CoA and NAD+, and tight interplay with metabolism. Histone acetylation and non-histone protein acetylation influence a myriad of cellular and physiological processes, including transcription, phase separation, autophagy, mitosis, differentiation and neural function. The activity of lysine acetyltransferases and lysine deacetylases can, in turn, be regulated by metabolic states, diet and specific small molecules. Histone acetylation has also recently been shown to mediate cellular memory. These features enable acetylation to integrate the cellular state with transcriptional output and cell-fate decisions.


Assuntos
Histonas , Lisina Acetiltransferases , Acetilação , Histonas/metabolismo , Lisina/metabolismo , Lisina Acetiltransferases/metabolismo , Processamento de Proteína Pós-Traducional
13.
Nat Commun ; 12(1): 6212, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707105

RESUMO

Noncommunicable diseases (NCDs) account for over 70% of deaths world-wide. Previous work has linked NCDs such as type 2 diabetes (T2D) to disruption of chromatin regulators. However, the exact molecular origins of these chronic conditions remain elusive. Here, we identify the H4 lysine 16 acetyltransferase MOF as a critical regulator of central carbon metabolism. High-throughput metabolomics unveil a systemic amino acid and carbohydrate imbalance in Mof deficient mice, manifesting in T2D predisposition. Oral glucose tolerance testing (OGTT) reveals defects in glucose assimilation and insulin secretion in these animals. Furthermore, Mof deficient mice are resistant to diet-induced fat gain due to defects in glucose uptake in adipose tissue. MOF-mediated H4K16ac deposition controls expression of the master regulator of glucose metabolism, Pparg and the entire downstream transcriptional network. Glucose uptake and lipid storage can be reconstituted in MOF-depleted adipocytes in vitro by ectopic Glut4 expression, PPARγ agonist thiazolidinedione (TZD) treatment or SIRT1 inhibition. Hence, chronic imbalance in H4K16ac promotes a destabilisation of metabolism triggering the development of a metabolic disorder, and its maintenance provides an unprecedented regulatory epigenetic mechanism controlling diet-induced obesity.


Assuntos
Carbono/metabolismo , Dieta Hiperlipídica/efeitos adversos , Histonas/metabolismo , Lisina/metabolismo , Obesidade/etiologia , Acetilação , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Aminoácidos/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Haploinsuficiência , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Metabolismo dos Lipídeos , Camundongos , Obesidade/genética , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo
15.
Sci Adv ; 7(32)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34362741

RESUMO

Hematopoietic stem cells (HSCs) are able to reconstitute the bone marrow while retaining their self-renewal property. Individual HSCs demonstrate heterogeneity in their repopulating capacities. Here, we found that the levels of the histone acetyltransferase MOF (males absent on the first) and its target modification histone H4 lysine 16 acetylation are heterogeneous among HSCs and influence their proliferation capacities. The increased proliferative capacities of MOF-depleted cells are linked to their expression of CD93. The CD93+ HSC subpopulation simultaneously shows transcriptional features of quiescent HSCs and functional features of active HSCs. CD93+ HSCs were expanded and exhibited an enhanced proliferative advantage in Mof +/- animals reminiscent of a premalignant state. Accordingly, low MOF and high CD93 levels correlate with poor survival and increased proliferation capacity in leukemia. Collectively, our study indicates H4K16ac as an important determinant for HSC heterogeneity, which is linked to the onset of monocytic disorders.

16.
Nat Cell Biol ; 23(7): 704-717, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34253898

RESUMO

Haematopoietic stem cells (HSCs) are normally quiescent, but have evolved mechanisms to respond to stress. Here, we evaluate haematopoietic regeneration induced by chemotherapy. We detect robust chromatin reorganization followed by increased transcription of transposable elements (TEs) during early recovery. TE transcripts bind to and activate the innate immune receptor melanoma differentiation-associated protein 5 (MDA5) that generates an inflammatory response that is necessary for HSCs to exit quiescence. HSCs that lack MDA5 exhibit an impaired inflammatory response after chemotherapy and retain their quiescence, with consequent better long-term repopulation capacity. We show that the overexpression of ERV and LINE superfamily TE copies in wild-type HSCs, but not in Mda5-/- HSCs, results in their cycling. By contrast, after knockdown of LINE1 family copies, HSCs retain their quiescence. Our results show that TE transcripts act as ligands that activate MDA5 during haematopoietic regeneration, thereby enabling HSCs to mount an inflammatory response necessary for their exit from quiescence.


Assuntos
Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Elementos de DNA Transponíveis , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Helicase IFIH1 Induzida por Interferon/metabolismo , Agonistas Mieloablativos/farmacologia , Animais , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Retrovirus Endógenos/genética , Ativação Enzimática , Células HEK293 , Células-Tronco Hematopoéticas/enzimologia , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Ligantes , Elementos Nucleotídeos Longos e Dispersos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
17.
Life Sci Alliance ; 4(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34266874

RESUMO

Sex chromosomes induce potentially deleterious gene expression imbalances that are frequently corrected by dosage compensation (DC). Three distinct molecular strategies to achieve DC have been previously described in nematodes, fruit flies, and mammals. Is this a consequence of distinct genomes, functional or ecological constraints, or random initial commitment to an evolutionary trajectory? Here, we study DC in the malaria mosquito Anopheles gambiae The Anopheles and Drosophila X chromosomes evolved independently but share a high degree of homology. We find that Anopheles achieves DC by a mechanism distinct from the Drosophila MSL complex-histone H4 lysine 16 acetylation pathway. CRISPR knockout of Anopheles msl-2 leads to embryonic lethality in both sexes. Transcriptome analyses indicate that this phenotype is not a consequence of defective X chromosome DC. By immunofluorescence and ChIP, H4K16ac does not preferentially enrich on the male X. Instead, the mosquito MSL pathway regulates conserved developmental genes. We conclude that a novel mechanism confers X chromosome up-regulation in Anopheles Our findings highlight the pluralism of gene-dosage buffering mechanisms even under similar genomic and functional constraints.


Assuntos
Anopheles/genética , Cromossomos de Insetos/genética , Mecanismo Genético de Compensação de Dose , Drosophila/genética , Cromossomo X/genética , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolução Molecular , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Masculino , Complexos Multiproteicos/metabolismo , Especificidade de Órgãos , Fenótipo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
18.
Nat Cell Biol ; 23(2): 116-126, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33558730

RESUMO

Alterations in nuclear shape are present in human diseases and ageing. A compromised nuclear lamina is molecularly interlinked to altered chromatin functions and genomic instability. Whether these alterations are a cause or a consequence of the pathological state are important questions in biology. Here, we summarize the roles of nuclear envelope components in chromatin organization, phase separation and transcriptional and epigenetic regulation. Examining these functions in healthy backgrounds will guide us towards a better understanding of pathological alterations.


Assuntos
Lâmina Nuclear/patologia , Envelhecimento/patologia , Animais , Doença , Epigênese Genética , Humanos , Laminas/metabolismo , Lâmina Nuclear/genética , Processamento de Proteína Pós-Traducional
19.
Nature ; 589(7840): 137-142, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208948

RESUMO

Confinement of the X chromosome to a territory for dosage compensation is a prime example of how subnuclear compartmentalization is used to regulate transcription at the megabase scale. In Drosophila melanogaster, two sex-specific non-coding RNAs (roX1 and roX2) are transcribed from the X chromosome. They associate with the male-specific lethal (MSL) complex1, which acetylates histone H4 lysine 16 and thereby induces an approximately twofold increase in expression of male X-linked genes2,3. Current models suggest that X-over-autosome specificity is achieved by the recognition of cis-regulatory DNA high-affinity sites (HAS) by the MSL2 subunit4,5. However, HAS motifs are also found on autosomes, indicating that additional factors must stabilize the association of the MSL complex with the X chromosome. Here we show that the low-complexity C-terminal domain (CTD) of MSL2 renders its recruitment to the X chromosome sensitive to roX non-coding RNAs. roX non-coding RNAs and the MSL2 CTD form a stably condensed state, and functional analyses in Drosophila and mammalian cells show that their interactions are crucial for dosage compensation in vivo. Replacing the CTD of mammalian MSL2 with that from Drosophila and expressing roX in cis is sufficient to nucleate ectopic dosage compensation in mammalian cells. Thus, the condensing nature of roX-MSL2CTD is the primary determinant for specific compartmentalization of the X chromosome in Drosophila.


Assuntos
Compartimento Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/citologia , Drosophila/genética , RNA/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Animais , Compartimento Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA/química , Drosophila/metabolismo , Proteínas de Drosophila/química , Feminino , Humanos , Masculino , Camundongos , Conformação de Ácido Nucleico , RNA/genética , Fatores de Transcrição/química
20.
Sci Rep ; 10(1): 15954, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994509

RESUMO

Mutations of cilia-associated molecules cause multiple developmental defects that are collectively termed ciliopathies. However, several ciliary proteins, involved in gating access to the cilium, also assume localizations at other cellular sites including the nucleus, where they participate in DNA damage responses to maintain tissue integrity. Molecular insight into how these molecules execute such diverse functions remains limited. A mass spectrometry screen for ANKS6-interacting proteins suggested an involvement of ANKS6 in RNA processing and/or binding. Comparing the RNA-binding properties of the known RNA-binding protein BICC1 with the three ankyrin-repeat proteins ANKS3, ANKS6 (NPHP16) and INVERSIN (NPHP2) confirmed that certain nephronophthisis (NPH) family members can interact with RNA molecules. We also observed that BICC1 and INVERSIN associate with stress granules in response to translational inhibition. Furthermore, BICC1 recruits ANKS3 and ANKS6 into TIA-1-positive stress granules after exposure to hippuristanol. Our findings uncover a novel function of NPH family members, and provide further evidence that NPH family members together with BICC1 are involved in stress responses to maintain tissue and organ integrity.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico/fisiologia , Repetição de Anquirina , Proteínas de Transporte/metabolismo , Cílios/metabolismo , Ciliopatias/metabolismo , Células HEK293 , Células HeLa , Humanos , Rim/metabolismo , Doenças Renais Císticas/congênito , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/fisiopatologia , Mutação , Proteínas Nucleares/metabolismo , Doenças Renais Policísticas/genética , RNA/metabolismo , Esteróis/farmacologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA