Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38730768

RESUMO

A promising method for additive manufacturing that makes it possible to produce intricate and personalized parts is selective laser melting (SLM). However, the mechanical properties of as-corroded SLM parts are still areas of concern. This research investigates the mechanical behavior of SLM parts that are exposed to a saline environment containing a 3.5% NaCl solution for varying lengths of time. The exposure times chosen for this study were 10 days, 20 days, and 30 days. The results reveal that the tensile strength of the parts is significantly affected by the duration of exposure. Additionally, the study also examined the influence of porosity on the corrosion behavior of the parts. The analysis included studying the mass loss of the parts over time, and a regression analysis was conducted to analyze the relationship between exposure time and mass loss. In addition, the utilization of scanning electron microscopy (SEM) and X-ray photo spectroscopy (XPS) techniques yielded valuable insights into the fundamental mechanisms accountable for the observed corrosion and mechanical behavior. It was found that the presence of corrosion products (i.e., oxide layer) and pitting contributed to the degradation of the SLM parts in the saline environment. This research emphasizes the importance of considering part thickness in the design of SLM components for corrosive environments and provides insights for enhancing their performance and durability.

2.
Sci Prog ; 106(1): 368504221148342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36617880

RESUMO

For evaluating the significance of renewable alternative fuels for optimized engine performance and lower emissions, methanol has been extensively utilized as a blend with gasoline in spark-ignition engines. However, rare attempts have been rendered to examine the consequence of methanol-gasoline fuel blends (M6, M12, and M18) on lubricant oil operating for a longer period in engines. The highest and least decrease of 9.62% and 6.68% in kinematic viscosity (KV) was observed for M0 and M18, respectively. However, the flash point (FP) of degraded lubricant oil for M6, M12, and M18 was 3%, 5%, and 7% higher than that of M0, respectively. Total acid number (TAN) and ash content of degraded lubricant oil for M18 were the highest among M0, M6, and M12. An inclusive optimization of engine performance, emissions, and lubricant oil properties has been made for various methanol-gasoline fuel blends at distinct operating conditions by employing the response surface methodology (RSM) technique. RSM-based optimization portrayed the composite desirability value of 0.73 for 2137.13 watt brake power (BP), 6.08 N-m torque, 0.37 kg/kwh brake-specific fuel consumption, 22.10% brake thermal efficiency, 4.02% carbon monoxide emission, 7.15% carbon dioxide emission, 134.12 ppm hydrocarbon emission, 517.02 ppm nitrogen oxides emission, 12.44 cst KV, 203.77°C FP, 2.23 mg/g KOH TAN, and 2.65%wt ash content as responses for fuel blend M8 at 3400 rpm and higher loading condition. RSM predicted results demonstrated significant compliance with empirical findings, with absolute percentage error (APE) below 5% for each response. However, the highest APE of 4.68% was obtained for FP owing to inefficient desirability as a consequence of manual testing. The least APE of 1.57% was obtained for torque because of the highest desirability. Overall, the RSM predicted results of the designed models are effective and viable. RSM technique was found to be effective for the optimization of the broader engine characteristics spectrum.

3.
Materials (Basel) ; 15(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35629612

RESUMO

BaCe0.2Zr0.6Y0.2O3−δ (BCZY) perovskite electrolytes were synthesized for intermediate-temperature solid oxide fuel cell with a cost-effective and versatile co-precipitation method. The synthesized BCZY electrolytes were sintered at 900, 1000, and 1100 °C to observe the effects of low sintering temperature on the structural, morphological, thermal, and electrical properties of BCZY. All BCZY electrolytes materials exhibited a crystalline perovskite structure and were found to be thermally stable. The crystallinity and conductivity of BCZY electrolyte enhanced with increased sintering temperature, due to the grain growth. At the same time, secondary phases of carbonates were also observed for samples sintered at a temperature lower than 1100 °C. The BCZY sintered at 1100 °C exhibited a density >95%, and a power density of 350 mWcm−2 with open-circuit voltage 1.02 V at 650 °C was observed due its dense and airtight structure. Based on the current investigation, we suggest that the BaCe0.2Zr0.6Y0.2O3−δ perovskite electrolyte sintered at a temperature of 1100 °C is a suitable electrolyte for IT-SOFC.

4.
Materials (Basel) ; 14(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34639910

RESUMO

In a number of circumstances, the Kachanov-Rabotnov isotropic creep damage constitutive model has been utilized to assess the creep deformation of high-temperature components. Secondary creep behavior is usually studied using analytical methods, whereas tertiary creep damage constants are determined by the combination of experiments and numerical optimization. To obtain the tertiary creep damage constants, these methods necessitate extensive computational effort and time to determine the tertiary creep damage constants. In this study, a curve-fitting technique was proposed for applying the Kachanov-Rabotnov model into the built-in Norton-Bailey model in Abaqus. It extrapolates the creep behaviour by fitting the Kachanov-Rabotnov model to the limited creep data obtained from the Omega-Norton-Bailey regression model and then simulates beyond the available data points. Through the Omega creep model, several creep strain rates for SS-316 were calculated using API-579/ASME FFS-1 standards. These are dependent on the type of the material, the flow stress, and the temperature. In the present work, FEA creep assessment was carried out on the SS-316 dog bone specimen, which was used as a material coupon to forecast time-dependent permanent plastic deformation as well as creep behavior at elevated temperatures and under uniform stress. The model was validated with the help of published experimental creep test data, and data optimization for sensitivity study was conducted by applying response surface methodology (RSM) and ANOVA techniques. The results showed that the specimen underwent secondary creep deformation for most of the analysis period. Hence, the method is useful in predicting the complete creep behavior of the material and in generating a creep curve.

5.
Materials (Basel) ; 12(9)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058827

RESUMO

This work provides a comprehensive investigation of multi-walled carbon nanotubes (MWCNTs) inducement in weldment and their apparent effect on the microstructure, %elongation and ultimate fracture behavior of Al-Mg-Si alloy referring modified tungsten inert gas (TIG) welding joints. Serious experimental work is carried out at 1 wt%, 1.5 wt%, and 2 wt% of MWCNTs to provide a gradually increasing heterogeneous nucleation. The behavior of grain morphology showed the pure field of epitaxial growth without MWCNTs, and the forestry type morphology for 1 wt% MWCNTs at low welding currents (160 A), though there was a noticeable conversion into equiaxed (EQZ) grains filled with inter-dendritic particles at high welding currents (180 A and 200 A) for 1.5 wt% and 2 wt% of MWCNTs. Moreover, the formation of a cellular type network above the fusion line predominated initially at all parameters. Conversely, fine EQZ grains were formed as they moved upward into the welded zone (WZ) explicitly at a high heat input. A conceptual pictorial model is presented in the study which summarized the behavior of morphological changes at the utilized parameters. The welded joints have demonstrated an increasing trend of strength and %elongation in contrast to joints without added MWCNTs. Comparative results have shown an exceptional increment of 71 to 76% and 67 to 75% of elongation up to ultimate tensile strength (UTS), and a fracture point that was clinched for 1 wt% and 1.5 wt% MWCNTs at 180A. From macro to micro-examination of the fracture surfaces, pure ductile modes constituting elliptical cup and cone type isotropic flow was evident in all specimens. Detailed confirmation of the pull-out fracture mode of MWCNTs has highlighted in the scanning electron microscope (SEM) images that intimated a methodical contribution in load-transfer from matrix to the fiber under axial load. Overall, a concise en-route for MWCNTs inducement is well-appointed through tube fillers along with an activating facilitator (TiO2) in contrast to stereotype fillers for improved behavior termed as modified TIG welding joint process in study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA