Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081970

RESUMO

StayGold is an exceptionally bright and stable fluorescent protein that is highly resistant to photobleaching. Despite favorable fluorescence properties, use of StayGold as a fluorescent tag is limited because it forms a natural dimer. Here we report the 1.6 Å structure of StayGold and generate a derivative, mStayGold, that retains the brightness and photostability of the original protein while being fully monomeric.

2.
mSphere ; 7(5): e0033322, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190134

RESUMO

Specialized epitope tags continue to be integral components of various biochemical and cell biological applications such as fluorescence microscopy, immunoblotting, immunoprecipitation, and protein purification. However, until recently, no single tag could offer this complete set of functionalities on its own. Here, we present a plasmid-based toolkit named ALIBY (ALFA toolkit for imaging and biochemistry in yeast) that provides a universal workflow to adopt the versatile ALFA tag/NbALFA system within the well-established model organism Saccharomyces cerevisiae. The kit comprises tagging plasmids for labeling a protein of interest with the ALFA tag and detection plasmids encoding fluorescent-protein-tagged NbALFA for live-cell imaging purposes. We demonstrate the suitability of ALIBY for visualizing the spatiotemporal localization of yeast proteins (i.e., the cytoskeleton, nucleus, centrosome, mitochondria, vacuole, endoplasmic reticulum, exocyst, and divisome) in live cells. Our approach has yielded an excellent signal-to-noise ratio without off-target effects or any effect on cell growth. In summary, our yeast-specific toolkit aims to simplify and further advance the live-cell imaging of differentially abundant yeast proteins while also being suitable for biochemical applications. IMPORTANCE In yeast research, conventional fluorescent protein tags and small epitope tags are widely used to study the spatiotemporal dynamics and activity of proteins. Although proven to be efficient, these tags lack the versatility for use across different cell biological and biochemical studies of a given protein of interest. Therefore, there is an urgent need for a unified platform for visualization and biochemical and functional analyses of proteins of interest in yeast. Here, we have engineered ALIBY, a plasmid-based toolkit that expands the benefits of the recently developed ALFA tag/NbALFA system to studies in the well-established model organism Saccharomyces cerevisiae. We demonstrate that ALIBY provides a simple and versatile strain construction workflow for long-duration live-cell imaging and biochemical applications in yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Plasmídeos/genética , Retículo Endoplasmático/metabolismo , Epitopos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA