Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921420

RESUMO

The ubiquitous soil-associated fungus Cryptococcus neoformans causes pneumonia that may progress to fatal meningitis. Recognition of fungal cell walls by C-type lectin receptors (CLRs) has been shown to trigger the host immune response. Caspase recruitment domain-containing protein 9 (Card9) is an intracellular adaptor that is downstream of several CLRs. Experimental studies have implicated Card9 in host resistance against C. neoformans; however, the mechanisms that are associated with susceptibility to progressive infection are not well defined. To further characterize the role of Card9 in cryptococcal infection, Card9em1Sq mutant mice that lack exon 2 of the Card9 gene on the Balb/c genetic background were created using CRISPR-Cas9 genome editing technology and intratracheally infected with C. neoformans 52D. Card9em1Sq mice had significantly higher lung and brain fungal burdens and shorter survival after C. neoformans 52D infection. Susceptibility of Card9em1Sq mice was associated with lower pulmonary cytokine and chemokine production, as well as reduced numbers of CD4+ lymphocytes, neutrophils, monocytes, and dendritic cells in the lungs. Histological analysis and intracellular cytokine staining of CD4+ T cells demonstrated a Th2 pattern of immunity in Card9em1Sq mice. These findings demonstrate that Card9 broadly regulates the host inflammatory and immune response to experimental pulmonary infection with a moderately virulent strain of C. neoformans.

2.
Paediatr Respir Rev ; 43: 67-77, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35131174

RESUMO

Mobile (m) Health technology is well-suited for Remote Patient Monitoring (RPM) in a patient's habitual environment. In recent years there have been fast-paced developments in mHealth-enabled pediatric RPM, especially during the COVID-19 pandemic, necessitating evidence synthesis. To this end, we conducted a scoping review of clinical trials that had utilized mHealth-enabled RPM of pediatric asthma. MEDLINE, Embase and Web of Science were searched from September 1, 2016 through August 31, 2021. Our scoping review identified 25 publications that utilized synchronous and asynchronous mHealth-enabled RPM in pediatric asthma, either involving mobile applications or via individual devices. The last three years has seen the development of evidence-based, multidisciplinary, and participatory mHealth interventions. The quality of the studies has been improving, such that 40% of included study reports were randomized controlled trials. In conclusion, there exists high-quality evidence on mHealth-enabled RPM in pediatric asthma, warranting future systematic reviews and/or meta-analyses of the benefits of such RPM.


Assuntos
Asma , COVID-19 , Aplicativos Móveis , Telemedicina , Criança , Humanos , Pandemias , Asma/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA