Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Eng Phys ; 121: 104012, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37985018

RESUMO

Endoprosthetic reconstruction of the pelvic bone using 3D-printed, custom-made implants has delivered early load-bearing ability and good functional outcomes in the short term to individuals with pelvic sarcoma. However, excessive stress-shielding and subsequent resorption of peri­prosthetic bone can imperil the long-term stability of such implants. To evaluate the stress-shielding performance of pelvic prostheses, we developed a sequential modeling scheme using subject-specific finite element models of the pelvic bone-implant complex and personalized neuromusculoskeletal models for pre- and post-surgery walking. A new topology optimization approach is introduced for the stress-shielding resistant (SSR) design of custom pelvic prostheses, which uses 3D-printable porous lattice structures. The SSR optimization was applied to a typical pelvic prosthesis to reconstruct a type II+III bone resection. The stress-shielding performance of the optimized implant based on the SSR approach was compared against the conventional optimization. The volume of the peri­prosthetic bone predicted to undergo resorption post-surgery decreased from 44 to 18%. This improvement in stress-shielding resistance was achieved without compromising the structural integrity of the prosthesis. The SSR design approach has the potential to improve the long-term stability of custom-made pelvic prostheses.


Assuntos
Membros Artificiais , Ossos Pélvicos , Humanos , Desenho de Prótese , Próteses e Implantes , Ossos Pélvicos/cirurgia , Pelve , Análise de Elementos Finitos
2.
Med Eng Phys ; 96: 1-12, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34565547

RESUMO

Patient-specific finite element (FE) models of bone require the assignment of heterogeneous material properties extracted from the subject's computed tomography (CT) images. Though node-based (NB) and element-based (EB) material mapping methods (MMMs) have been proposed, the sensitivity and convergence of FE models to MMM for varying mesh sizes are not well understood. In this work, CT-derived and synthetic bone material data were used to evaluate the effect of MMM on results from FE analyses. Pelvic trabecular bone data was extracted from CT images of six subjects, while synthetic data were created to resemble trabecular bone properties. The numerical convergence of FE bone models using different MMMs were evaluated for strain energy, von-Mises stress, and strain. NB and EB MMMs both demonstrated good convergence regarding total strain energy, with the EB method having a slight edge over the NB. However, at the local level (e.g., maximum stress and strain), FE results were sensitive to the field type, MMM, and the FE mesh size. The EB method exhibited superior performance in finer meshes relative to the voxel size. The NB method converged better than did the EB method for coarser meshes. These findings may lead to higher-fidelity patient-specific FE bone models.


Assuntos
Osso Esponjoso , Pelve , Osso e Ossos , Osso Esponjoso/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Modelos Biológicos , Estresse Mecânico , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA