Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Ibrain ; 8(3): 251-263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37786742

RESUMO

Insulin resistance (IR) is a risk factor for metabolic disorders and neurodegeneration. Peroxisome proliferator-activated receptor (PPAR) agonists have been proven to mitigate the neuronal pathology associated with IR. However, the synergetic efficacy of these agonists is yet to be fully described. Hence, we aimed to investigate the efficacy of PPARα/γ agonists (fenofibrate and pioglitazone) on a high-fat diet (HFD) and streptozotocin (STZ)-induced hippocampal neurodegeneration. Male Wistar rats (200 ± 25 mg/body weight [BW]) were divided into five groups. The experimental groups were fed on an HFD for 12 weeks coupled with 5 days of an STZ injection (30 mg/kg/BW, i.p) to induce IR. Fenofibrate (FEN; 100 mg/kg/BW, orally), pioglitazone (PIO; 20 mg/kg/BW, orally), and their combination were administered for 2 weeks postinduction. Behavioral tests were conducted, and blood was collected to determine insulin sensitivity after treatment. Animals were killed for assessment of oxidative stress, cellular morphology characterization, and astrocytic evaluation. HFD/STZ-induced IR increased malondialdehyde (MDA) levels and decreased glutathione (GSH) levels. Evidence of cellular alterations and overexpression of astrocytic protein was observed in the hippocampus. By contrast, monotherapy of FEN and PIO increased the GSH level (p < 0.05), decreased the MDA level (p < 0.05), and improved cellular morphology and astrocytic expression. Furthermore, the combined treatment led to improved therapeutic activities compared to monotherapies. In conclusion, FEN and PIO exerted a therapeutic synergistic effect on HFD/STZ-induced IR in the hippocampus.

2.
Basic Clin Neurosci ; 13(5): 695-708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37313023

RESUMO

Introduction: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder in women that is associated with an increased risk of infertility. This study aims to evaluate the neurobehavioral and neurochemical changes along with the associated changes in the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC) of the dehydroepiandrosterone (DHEA)-induced PCOS model rats. Methods: A total of 12 female juvenile Wistar rats (30 to 50 g) about 22 to 44 days old were divided into 2 groups. The control group received sesame oil while the PCOS group received sesame oil plus DHEA. All treatment was done via daily subcutaneous injection for 21 days. Results: Subcutaneous DHEA-induced PCOS significantly depleted the line crossing and rearing frequency in the open field, along with the percentage of the time in the white box, line crossing, rearing, and peeping frequency in the black and white box, and the percentage of alternation in the Y-maze. PCOS significantly increased the immobility time, freezing period, and the percentage of time in the dark area in the forced swim test, open field test, and black and white box, respectively. The level of luteinizing hormone, follicle-stimulating hormone, malondialdehyde (MDA), reactive oxygen species (ROS), and interleukin-6 (IL-6) increased significantly, while norepinephrine depleted significantly with an obvious decrease in the brain-derived neurotrophic factor level in the PCOS model rats. PCOS rats exhibited cystic follicles in the ovaries and necrotic or degenerative like features in the hippocampal pyramidal cells. Conclusion: DHEA-induced PCOS results in anxiety and depressive behavior with structural alteration in rats, possibly through the elevation of MDA, ROS, and IL-6 levels, which also attributes to impaired emotional and executive functions in the mPFC and ACC.

3.
Metab Brain Dis ; 36(5): 1037-1048, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33666820

RESUMO

Androgen deprivation can be achieved through testosterone antagonists (chemical castration) with or without orchidectomy. We use a rat model to characterize hippocampal structural and functional changes that might be associated with a subset population of androgen deprived insulin-resistant patients. Adult male Wistar rats assigned into six (6) groups: control group (distilled water/sham), orchiectomy group (bilateral orchiectomy), flutamide group (oral flutamide; 11 mg/kg body weight), diabetes group (multiple low-dose of streptozotocin (STZ; 30 mg/kg body weight intraperitoneally), orchiectomy and diabetic group (bilateral orchiectomy with 30 mg/kg body weight of STZ), and orchiectomy/diabetic/flutamide group (bilateral orchiectomy with 30 mg/kg body weight of STZ with 11 mg/kg body weight of flutamide). Animals were sacrificed at 30 and 60 days respectively. Spatial learning and working memory behavior were assessed; while total plasma; testosterone, insulin levels, and fasting blood glucose were assayed; the Homeostasis model for insulin resistance was also calculated. Histological examinations by H&E and CFV, while immunohistochemical analysis of astrocytes, P53 protein, and NSE were performed. Androgen deprived insulin-resistant state caused altered learning and cognitive behavior through decreased percentage correct alternation to an increased escape latency period. Significant bidirectional correlates exist between the hormonal profiles relative to the control group (p < 0.05), especially in the 60 days post-orchiectomy. While histological and immunohistochemical data indicate microcellular derangement. That the summate effects of androgen deprivation and impaired insulin signaling exacerbate hippocampal neurodegenerative changes that merit further studies.


Assuntos
Hipocampo/metabolismo , Resistência à Insulina/fisiologia , Memória de Curto Prazo/fisiologia , Aprendizagem Espacial/fisiologia , Antagonistas de Androgênios/farmacologia , Animais , Astrócitos/metabolismo , Glicemia , Flutamida/farmacologia , Hipocampo/efeitos dos fármacos , Insulina/sangue , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Neurônios/metabolismo , Orquiectomia , Ratos , Ratos Wistar , Aprendizagem Espacial/efeitos dos fármacos , Testosterona/sangue
4.
Behav Brain Res ; 380: 112419, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31816337

RESUMO

Dementia is a progressive cognitive diminution impeding with normal daily activities that is constantly on the increase. Currently, the estimated prevalence is 50 million affected people worldwide, a figure expected to triple within the next 30 years. While the pathophysiology of the different types of dementia is complex, likely involving the interplay between multiple genetic and environmental factors, strong evidence points towards an important link between diet and cognitive health. Here we examined the consequences of high-fat, high-sugar Western diet (HFSD)-induced obesity on cognitive performance in the fear conditioning task in mice and explored a possible beneficial effect of 6-shogaol (6S), an active constituent of ginger, in this model. Chronic exposure to HFSD significantly enhanced body weight gain in C57BL/6N mice and this effect was prevented by treatment with 6S. HFSD + vehicle-treated mice presented with a selective deficit in cued fear memory, which was not observed in HFSD + 6S-treated animals. The findings of this study provide first evidence for a beneficial effect of 6S on HFSD-induced obesity and emotional memory deficit in mice.


Assuntos
Comportamento Animal/efeitos dos fármacos , Catecóis/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Condicionamento Clássico/efeitos dos fármacos , Dieta Ocidental/efeitos adversos , Medo/fisiologia , Memória/efeitos dos fármacos , Nootrópicos/farmacologia , Animais , Comportamento Animal/fisiologia , Catecóis/administração & dosagem , Disfunção Cognitiva/fisiopatologia , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Nootrópicos/administração & dosagem , Obesidade/complicações , Obesidade/etiologia
5.
Dev Neurosci ; 40(1): 39-53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29393204

RESUMO

KCC2 (a brain-specific potassium-chloride cotransporter) affects development of the cerebral cortex, including aspects of neuronal migration and cellular maturation and differentiation. KCC2 also modulates chloride homeostasis by influencing the switch of GABA from depolarizing in young neurons to hyperpolarizing in mature neurons. We describe the expression pattern, regional distribution, and cellular colocalization of KCC2 in the ferret cortex in normal kits and those treated with methylazoxymethanol acetate (MAM). We earlier developed a model of impaired cortical development by injecting MAM during mid-cortical gestation, which briefly interferes with neuronal production and additionally results in increased levels of KCC2 at P0. Using immunohistochemistry, we show a shift in KCC2 expression during development, being high in the subplate at P0, repositioning into a subtle laminar pattern in the neocortex at P7-P14, and becoming homogeneous at P35. KCC2 colocalizes with neuronal markers in the developing and mature cerebral cortex of normal ferrets and those treated with MAM, but shows a differential pattern of expression at different ages and locates in distinct cellular compartments during development. Subcellular localization shows that KCC2 predominantly situates in the membrane fraction of neocortical samples. These findings reveal that KCC2 colocalizes differentially with neurons and its expression pattern alters during development.


Assuntos
Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Neurogênese/fisiologia , Simportadores/metabolismo , Animais , Animais Recém-Nascidos , Furões , Neurônios/metabolismo , Cotransportadores de K e Cl-
6.
Scientifica (Cairo) ; 2016: 1535490, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242946

RESUMO

This paper reports a study of cone photoreceptors present in the retina of Manis tricuspis. Specifically, the LWS (L-) opsin expressed in longwave-sensitive cones and SWS1 (S-) opsin shortwave-sensitive cones were targeted. Vertical sections revealed reactivity to a cone marker, peanut agglutinin (PNA), and to an LWS antibody, but not to an SWS1 antibody. This suggests that the Manis tricuspis visual system is not able to discriminate shorter wavelengths from longer wavelengths because the short wavelength cones are not expressed in their retina.

7.
Metab Brain Dis ; 31(1): 25-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25916484

RESUMO

Kolaviron is a phytochemical isolated from Garcina kola (G. kola); a common oral masticatory agent in Nigeria (West Africa). It is a bioflavonoid used--as an antiviral, anti-inflammatory and antioxidant--in relieving the symptoms of several diseases and infections. In this study we have evaluated the neuroprotective and regenerative effect of kolaviron in neurons of the prefrontal cortex (Pfc) before or after exposure to sodium azide (NaN3) induced oxidative stress. Separate groups of animals were treated as follows; kolaviron (200 mg/Kg) for 21 days; kolaviron (200 mg/Kg for 21 days) followed by NaN3 treatment (20 mg/Kg for 5 days); NaN3 treatment (20 mg/Kg for 5 days) followed by kolaviron (200 mg/Kg for 21 days); 1 ml of corn-oil (21 days-vehicle); NaN3 treatment (20 mg/Kg for 5 days). Exploratory activity associated with Pfc function was assessed in the open field test (OFT) following which the microscopic anatomy of the prefrontal cortex was examined in histology (Haematoxylin and Eosin) and antigen retrieval Immunohistochemistry to show astroglia activation (GFAP), neuronal metabolism (NSE), cytoskeleton (NF) and cell cycle dysregulation (p53). Subsequently, we quantified the level of Glucose-6-phosphate dehydrogenase (G6PDH) and lactate dehydrogenase (LDH) in the brain tissue homogenate as a measure of stress-related glucose metabolism. Kolaviron (Kv) and Kolaviron/NaN3 treatment caused no prominent change in astroglia density and size while NaN3 and NaN3/Kv induced astroglia activation and scar formation (astrogliosis) in the Pfc when compared with the control. Similarly, Kolaviron and Kv/NaN3 did not alter NSE expression (glucose metabolism) while NaN3 and NaN3/Kv treatment increased cortical NSE expression; thus indicating stress related metabolism. Further studies on enzymes of glucose metabolism (G6PDH and LDH) showed that NaN3 increased LDH while kolaviron reduced LDH in the brain tissue homogenate (P < 0.001). In addition kolaviron treatment before (P < 0.001) or after (P < 0.05) NaN3 treatment also reduced LDH expression; thus supporting its role in suppression of oxidative stress. Interestingly, NF deposition increased in the Pfc after kolaviron treatment while Kv/NaN3 showed no significant change in NF when compared with the control. In furtherance, NaN3 and NaN3/Kv caused a decrease in NF deposition (degeneration). Ultimately, the protective effect of KV administered prior to NaN3 treatment was confirmed through p53 expression; which was similar to the control. However, NaN3 and NaN3/Kv caused an increase in p53 expression in the Pfc neurons (cell cycle dysregulation). We conclude that kolaviron is not neurotoxic when used at 200 mg/Kg BW. Furthermore, 200 mg/Kg of kolaviron administered prior to NaN3 treatment (Kv/NaN3) was neuroprotective when compared with Kolaviron administered after NaN3 treatment (NaN3/Kv). Some of the observed effects of kolaviron administered before NaN3 treatment includes reduction of astroglia activation, absence of astroglia scars, antioxidation (reduced NSE and LDH), prevention of neurofilament loss and cell cycle regulation.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Garcinia kola/química , Estresse Oxidativo/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Azida Sódica/antagonistas & inibidores , Azida Sódica/toxicidade , Animais , Antioxidantes/química , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Flavonoides/química , Ativação de Macrófagos/efeitos dos fármacos , Proteínas de Neurofilamentos/metabolismo , Neuroglia/efeitos dos fármacos , Nigéria , Fosfopiruvato Hidratase/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar
8.
Metab Brain Dis ; 30(6): 1531-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26307418

RESUMO

Diabetes mellitus (DM) is a risk factor for Alzheimer's disease (AD), and several individuals with AD are diabetic. Most non-transgenic animal models of AD make use of oral treatment with aluminium chloride (AlCl(3)) to induce brain lesions pathognomonic of the disease. Moreover, streptozotocin (STZ) can induce pathological features of either AD or DM depending on the mode of treatment. In the present study, we characterised prefrontal microanatomy and antioxidant defence system in a rat model of AD confounded by DM, with the objective of assessing the suitability of this model in the study of sporadic AD with DM co-morbidity. Adult Wistar rats were randomly assigned to receive either intraperitoneal STZ (30 mg/kg/day for 3 days; to induce DM), oral AlCl(3) (500 mg/kg/day for 4 weeks; to induce some brain lesions characteristic of AD); or both STZ and AlCl(3) (to induce AD with DM co-morbidity). Untreated rats served as controls. During treatment, blood glucose levels and body weights were evaluated repeatedly in all rats. At euthanasia, prefrontal cortex was homogenized in phosphate buffer solution and the supernatants assayed for some antioxidant enzymes (catalase, CAT; superoxide dismutase, SOD; and reduced glutathione, GSH). Moreover, following perfusion-fixation of the brain, frontal lobes were processed by the haematoxylin and eosin (H&E) or Congo red technique. Our findings showed that in rats co-administered AlCl(3) and STZ (AD + DM rats), prefrontal levels of GSH reduced significantly (p < 0.05), while reductions in SOD and CAT were not significant (p > 0.05) compared with the controls. Moreover, in this model of AD with DM co-morbidity, extensive neuronal cell loss was observed in the prefrontal cortex, but Congophilic deposits were not present. The neurodegenerative lesions and antioxidant deficits characteristic of this AlCl(3) + STZ (AD + DM) rat model were more pronounced than similar lesions associated with mono-treatment with either STZ (DM) or AlCl(3) (AD) alone; and this makes the AlCl(3) + STZ model a suitable option for the study of neurodegenerative diseases (such as AD) with DM co-morbidity.


Assuntos
Compostos de Alumínio , Doença de Alzheimer/patologia , Antioxidantes/metabolismo , Cloretos , Diabetes Mellitus Experimental/patologia , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/patologia , Córtex Pré-Frontal/patologia , Estreptozocina , Cloreto de Alumínio , Doença de Alzheimer/induzido quimicamente , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Masculino , Doenças Neurodegenerativas/complicações , Córtex Pré-Frontal/ultraestrutura , Ratos , Ratos Wistar
9.
Int. j. morphol ; 29(3): 850-856, Sept. 2011. ilus
Artigo em Inglês | LILACS | ID: lil-608670

RESUMO

Cognitive dysfunction is reportedly associated with poorly-managed diabetes mellitus. In this study, we report the effect of oral treatment with combined leaf extract (CLE) of neem and bitter leaf on the prefrontal cortex of diabetic Wistar rats. Adult male Wistar rats were randomized to one of the following groups: control, diabetic (STZ-induced), STZ + CLE, STZ + metformin and CLE only. At euthanasia, paraffin sections of the prefrontal cortex were stained with cresyl fast violet; while malondialdehyde (MDA) and glutathione peroxidase (GPx) were assayed in prefrontal homogenates. Oral CLE produced normoglycemia in the treated hyperglycaemic rats. Besides, Nissl-stained prefrontal sections showed no morphologic deficits in all the groups except the untreated diabetic rats. In the latter, there was weak Nissl staining, while prefrontal MDA was significantly high at euthanasia, compared with the control and CLE-treated rats (P<0.05). This study showed that untreated diabetes mellitus is associated with prefrontal Nissl body deficit and oxidative stress in Wistar rats. The absence of these deficits in CLE-treated rats suggests a neuroprotective effect of the extract in streptozotocin-induced diabetic rats. This may improve the cognitive function of the prefrontal cortex in diabetes mellitus.


La disfunción cognitiva es presuntamente asociada con un mal manejo de la diabetes mellitus. En este estudio, se presenta el efecto del tratamiento oral combinado con extracto de hoja (CLE) de hoja de neem amarga sobre la corteza prefrontal de ratas Wistar con diabetes. Las ratas Wistar adultas fueron asignadas al azar a uno de los siguientes grupos: control, diabetes (STZ inducida), STZ + CLE, STZ + metformina y CLE. Después de la eutanasia, los cortes de parafina de la corteza prefrontal se tiñeron con violeta de cresil rápido, mientras que el malondialdehído (MDA) y la glutatión peroxidasa (GPx) fueron analizadas en homogenizados prefrontales. El CLE produce normoglucemia en las ratas hiperglucémicas tratadas. Además, las secciones prefrontales teñidas para Nissl no muestran ningún déficit morfológico en todos los grupos excepto en las ratas diabéticas sin tratamiento. En este último caso, hubo una tinción de Nissl débil, mientras que la MDA prefrontal fue significativamente más alta en comparación con los grupos de ratas control y las tratadas con CLE (p <0,05). Este estudio mostró que la diabetes mellitus no tratada se asocia con déficit prefrontal de cuerpos de Nissl y estrés oxidativo en ratas Wistar. La ausencia de estos déficits en las ratas tratadas CLE, sugiere un efecto neuroprotector del extracto en ratas diabéticas inducidas por estreptozotocina. Esto puede mejorar la función cognitiva de la corteza prefrontal en la diabetes mellitus.


Assuntos
Ratos , Azadirachta , Azadirachta/ultraestrutura , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/terapia , Degeneração Retrógrada , Estreptozocina/efeitos adversos , Estreptozocina/toxicidade , Nigéria , Ratos Wistar/fisiologia , Ratos Wistar/sangue
10.
Int. j. morphol ; 28(1): 291-302, Mar. 2010. ilus
Artigo em Inglês | LILACS | ID: lil-579317

RESUMO

Botanical drugs are complementary therapies in the management of diabetes mellitus. In this work, we studied the effects of chronic treatment of diabetic rats with A. indica (neem) on blood glucose, pancreatic islet histopathology, and oxidative status of the pancreas. Fifty-four Wistar rats (5-8 weeks old) were randomly assigned to 5 treatment groups. Hyperglycemia was induced in 34 fasted rats with a single i.p. injection of STZ (70 mg/kg bw/d). Ethanolic extract of A. indica leaves (500 mg/kg bw/d) was given orally to diabetic rats (n=12) for 50d. Glibenclamide was given (p.o) at 600 µg/ kg bw/d. In each group, blood glucose, islet histopathology, and pancreatic oxidative status, were assessed. All hyperglycemic rats in the neem-treated group had become normoglycemic at the end of week 2. By 50d, the number of viable b cells was highest in the neem-treated diabetic rats (compared with the diabetic and glibenclamide groups). Similarly, islet histology showed marked improvement in this group, in addition to improved oxidative stress. Our findings confirmed the hypoglycemic effect of neem. Besides, the improved islet morphology and oxidative status in neem-treated diabetic rats suggest the potential of this herb at improving lesions of the pancreatic islet in diabetes mellitus.


Los medicamentos a base de plantas son terapias complementarias en el manejo de la diabetes mellitus. En este trabajo se estudiaron los efectos del tratamiento crónico de ratas diabéticas con A. indica (Neem) sobre la glucosa de la sangre, la histopatología de los islotes pancreáticos, y el estado oxidativo del páncreas. Cincuenta y cuatro ratas Wistar (5-8 semanas de edad) fueron asignadas aleatoriamente a 5 grupos de tratamiento. La hiperglucemia fue inducida en 34 ratas en ayunas con una única inyección IP de STZ (70 mg/kg peso corporal/d). El extracto etanólico de hojas de A. indica (500 mg/kg de peso corporal/día) fue administrado por vía oral a ratas diabéticas (n=12) por 50d. Glibenclamida fue dada (PO) a 600 mg/kg peso corporal/d. En cada grupo, la glucosa en la sangre, la histopatología de los islotes, y el estado oxidativo de páncreas, se evaluaron. Todas las ratas de hiperglucemia en el grupo tratado con el Neem se habían convertido en normoglucémicas al final de la semana 2. Por 50d, el número de células b viables fue mayor en el Neem ratas tratadas con diabetes (en comparación con los grupos de diabéticos y glibenclamida). Del mismo modo, la histología de los islotes mostró una notable mejoría en este grupo, además de mejorar el estrés oxidativo. Nuestros resultados confirman el efecto hipoglucemiante de Neem. Además, la mejora de la morfología de los islotes y el estado de oxidación en el neem tratados con ratas diabéticas sugieren el potencial de esta hierba en la mejora de las lesiones de los islotes pancreáticos en la diabetes mellitus.


Assuntos
Animais , Ratos , Azadirachta/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Ilhotas Pancreáticas , Azadirachta/farmacologia , Diabetes Mellitus/tratamento farmacológico , Extratos Vegetais/farmacologia , Glibureto/uso terapêutico , Glicemia , Hipoglicemiantes , Ilhotas Pancreáticas/patologia , Peróxido de Hidrogênio/análise , Peróxidos Lipídicos/análise , Peso Corporal , Ratos Wistar , Superóxido Dismutase , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA