Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1302587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533507

RESUMO

The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Comunicação Celular , Evasão da Resposta Imune , Células Estromais
2.
Cancer Metastasis Rev ; 43(2): 823-844, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38238542

RESUMO

Metastasis accounts for the vast majority of breast cancer-related fatalities. Although the contribution of genetic and epigenetic modifications to breast cancer progression has been widely acknowledged, emerging evidence underscores the pivotal role of physical stimuli in driving breast cancer metastasis. In this review, we summarize the changes in the mechanics of the breast cancer microenvironment and describe the various forces that impact migrating and circulating tumor cells throughout the metastatic process. We also discuss the mechanosensing and mechanotransducing molecules responsible for promoting the malignant phenotype in breast cancer cells. Gaining a comprehensive understanding of the mechanobiology of breast cancer carries substantial potential to propel progress in prognosis, diagnosis, and patient treatment.


Assuntos
Neoplasias da Mama , Progressão da Doença , Microambiente Tumoral , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Animais , Mecanotransdução Celular , Metástase Neoplásica
3.
Cancer Res Commun ; 3(7): 1286-1311, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37476073

RESUMO

Prostate cancer is the second leading cause of noncutaneous cancer-related deaths in American men. Androgen deprivation therapy (ADT), radical prostatectomy, and radiotherapy remain the primary treatment for patients with early-stage prostate cancer (castration-sensitive prostate cancer). Following ADT, many patients ultimately develop metastatic castration-resistant prostate cancer (mCRPC). Standard chemotherapy options for CRPC are docetaxel (DTX) and cabazitaxel, which increase median survival, although the development of resistance is common. Cancer stem-like cells possess mesenchymal phenotypes [epithelial-to-mesenchymal transition (EMT)] and play crucial roles in tumor initiation and progression of mCRPC. We have shown that low-dose continuous administration of topotecan (METRO-TOPO) inhibits prostate cancer growth by interfering with key cancer pathway genes. This study utilized bulk and single-cell or whole-transcriptome analysis [(RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq)], and we observed greater expression of several EMT markers, including Vimentin, hyaluronan synthase-3, S100 calcium binding protein A6, TGFB1, CD44, CD55, and CD109 in European American and African American aggressive variant prostate cancer (AVPC) subtypes-mCRPC, neuroendocrine variant (NEPC), and taxane-resistant. The taxane-resistant gene FSCN1 was also expressed highly in single-cell subclonal populations in mCRPC. Furthermore, metronomic-topotecan single agent and combinations with DTX downregulated these EMT markers as well as CD44+ and CD44+/CD133+ "stem-like" cell populations. A microfluidic chip-based cell invasion assay revealed that METRO-TOPO treatment as a single agent or in combination with DTX was potentially effective against invasive prostate cancer spread. Our RNA-seq and scRNA-seq analysis were supported by in silico and in vitro studies, suggesting METRO-TOPO combined with DTX may inhibit oncogenic progression by reducing cancer stemness in AVPC through the inhibition of EMT markers and multiple oncogenic factors/pathways. Significance: The utilization of metronomic-like dosing regimens of topotecan alone and in combination with DTX resulted in the suppression of makers associated with EMT and stem-like cell populations in AVPC models. The identification of molecular signatures and their potential to serve as novel biomarkers for monitoring treatment efficacy and disease progression response to treatment efficacy and disease progression were achieved using bulk RNA-seq and single-cell-omics methodologies.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Topotecan , Masculino , Humanos , Docetaxel/farmacologia , Topotecan/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Administração Metronômica , Antagonistas de Androgênios/farmacologia , Transição Epitelial-Mesenquimal , Taxoides , Progressão da Doença , Proteínas de Transporte/farmacologia , Proteínas dos Microfilamentos/farmacologia
4.
Adv Sci (Weinh) ; 10(23): e2302228, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37267923

RESUMO

Cell migration through confining three dimensional (3D) topographies can lead to loss of nuclear envelope integrity, DNA damage, and genomic instability. Despite these detrimental phenomena, cells transiently exposed to confinement do not usually die. Whether this is also true for cells subjected to long-term confinement remains unclear at present. To investigate this, photopatterning and microfluidics are employed to fabricate a high-throughput device that circumvents limitations of previous cell confinement models and enables prolonged culture of single cells in microchannels with physiologically relevant length scales. The results of this study show that continuous exposure to tight confinement can trigger frequent nuclear envelope rupture events, which in turn promote P53 activation and cell apoptosis. Migrating cells eventually adapt to confinement and evade cell death by downregulating YAP activity. Reduced YAP activity, which is the consequence of confinement-induced YAP1/2 translocation to the cytoplasm, suppresses the incidence of nuclear envelope rupture and abolishes P53-mediated cell death. Cumulatively, this work establishes advanced, high-throughput biomimetic models for better understanding cell behavior in health and disease, and underscores the critical role of topographical cues and mechanotransduction pathways in the regulation of cell life and death.


Assuntos
Mecanotransdução Celular , Proteína Supressora de Tumor p53 , Regulação para Baixo , Proteína Supressora de Tumor p53/metabolismo , Sobrevivência Celular , Membrana Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA