Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(17): 3059-3076, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37566734

RESUMO

Subunit-selective inhibition of N-methyl-d-aspartate receptors (NMDARs) is a promising therapeutic strategy for several neurological disorders, including epilepsy, Alzheimer's and Parkinson's disease, depression, and acute brain injury. We previously described the dihydroquinoline-pyrazoline (DQP) analogue 2a (DQP-26) as a potent NMDAR negative allosteric modulator with selectivity for GluN2C/D over GluN2A/B. However, moderate (<100-fold) subunit selectivity, inadequate cell-membrane permeability, and poor brain penetration complicated the use of 2a as an in vivo probe. In an effort to improve selectivity and the pharmacokinetic profile of the series, we performed additional structure-activity relationship studies of the succinate side chain and investigated the use of prodrugs to mask the pendant carboxylic acid. These efforts led to discovery of the analogue (S)-(-)-2i, also referred to as (S)-(-)-DQP-997-74, which exhibits >100- and >300-fold selectivity for GluN2C- and GluN2D-containing NMDARs (IC50 0.069 and 0.035 µM, respectively) compared to GluN2A- and GluN2B-containing receptors (IC50 5.2 and 16 µM, respectively) and has no effects on AMPA, kainate, or GluN1/GluN3 receptors. Compound (S)-(-)-2i is 5-fold more potent than (S)-2a. In addition, compound 2i shows a time-dependent enhancement of inhibitory actions at GluN2C- and GluN2D-containing NMDARs in the presence of the agonist glutamate, which could attenuate hypersynchronous activity driven by high-frequency excitatory synaptic transmission. Consistent with this finding, compound 2i significantly reduced the number of epileptic events in a murine model of tuberous sclerosis complex (TSC)-induced epilepsy that is associated with upregulation of the GluN2C subunit. Thus, 2i represents a robust tool for the GluN2C/D target validation. Esterification of the succinate carboxylate improved brain penetration, suggesting a strategy for therapeutic development of this series for NMDAR-associated neurological conditions.


Assuntos
Receptores de N-Metil-D-Aspartato , Transmissão Sináptica , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade , Transmissão Sináptica/fisiologia , Ácido Glutâmico/farmacologia , Encéfalo/metabolismo
2.
ACS Chem Neurosci ; 14(5): 917-935, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779874

RESUMO

Many cases of accidental death associated with drug overdose are due to chronic opioid use, tolerance, and addiction. Analgesic tolerance is characterized by a decreased response to the analgesic effects of opioids, requiring increasingly higher doses to maintain the desired level of pain relief. Overactivation of GluN2B-containing N-methyl-d-Aspartate receptors is thought to play a key role in mechanisms underlying cellular adaptation that takes place in the development of analgesic tolerance. Herein, we describe a novel GluN2B-selective negative allosteric modulator, EU93-108, that shows high potency and brain penetrance. We describe the structural basis for binding at atomic resolution. This compound possesses intrinsic analgesic properties in the rodent tail immersion test. EU93-108 has an acute and significant anodyne effect, whereby morphine when combined with EU93-108 produces a higher tail flick latency compared to that of morphine alone. These data suggest that engagement of GluN2B as a target has utility in the treatment of pain, and EU93-108 could serve as an appropriate tool compound to interrogate this hypothesis. Future structure-activity relationship work around this scaffold could give rise to compounds that can be co-administered with opioids to diminish the onset of tolerance due to chronic opioid use, thereby modifying their utility.


Assuntos
Analgesia , Morfina , Animais , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Receptores de N-Metil-D-Aspartato/metabolismo , Roedores/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Dor/tratamento farmacológico , Dor/metabolismo , Relação Dose-Resposta a Droga
3.
ACS Chem Neurosci ; 14(5): 958-976, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795782

RESUMO

The kappa opioid receptor (KOR) is involved in the regulation of both the reward and mood processes. Recent reports find that the use of drugs of abuse increases the production of dynorphin and the overall activation of KOR. Long-acting KOR antagonists, such as norbinaltorphimine (nor-BNI), JDTic, and 5'-guanidinonaltrindole (GNTI), have been shown to stop depressive and anxiety-related disorders, which are the common side effects of withdrawal that can lead to a relapse in drug use. Unfortunately, these prototypical KOR antagonists are known to induce selective KOR antagonism that is delayed by hours and extremely prolonged, and their use in humans comes with serious safety concerns because they possess a large window for potential drug-drug interactions. Furthermore, their persistent pharmacodynamic activities can hinder the ability to reverse unanticipated side effects immediately. Herein, we report our studies of the lead selective, salvinorin-based KOR antagonist (1) as well as nor-BNI on C57BL/6N male mice for spontaneous cocaine withdrawal. Assessment of pharmacokinetics showed that 1 is a short-acting compound with an average half-life of 3.75 h across different compartments (brain, spinal cord, liver, and plasma). Both 1 (5 mg/kg) and nor-BNI (5 mg/kg) were shown to reduce spontaneous withdrawal behavior in mice, with 1 producing additional anti-anxiety-like behavior in a light-dark transition test (however, no mood-related effects of 1 or nor-BNI were observed at the current dosing in an elevated plus maze or a tail suspension test). Our results support the study of selective, short-acting KOR antagonists for the treatment of psychostimulant withdrawal and the associated negative mood states that contribute to relapse. Furthermore, we identified pertinent interactions between 1 and KOR via computational studies, including induced-fit docking, mutagenesis, and molecular dynamics simulations, to gain insight into the design of future selective, potent, and short-acting salvinorin-based KOR antagonists.


Assuntos
Cocaína , Síndrome de Abstinência a Substâncias , Humanos , Camundongos , Masculino , Animais , Receptores Opioides kappa , Cocaína/farmacologia , Camundongos Endogâmicos C57BL , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Antagonistas de Entorpecentes/farmacologia , Recidiva
4.
Bioorg Med Chem ; 78: 117137, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603398

RESUMO

In cancer cells, glutaminolysis is the primary source of biosynthetic precursors. Recent efforts to develop amino acid analogues to inhibit glutamine metabolism in cancer have been extensive. Our lab recently discovered many L-γ-methyleneglutamic acid amides that were shown to be as efficacious as tamoxifen or olaparib in inhibiting the cell growth of MCF-7, SK-BR-3, and MDA-MB-231 breast cancer cells after 24 or 72 h of treatment. None of these compounds inhibited the cell growth of nonmalignant MCF-10A breast cells. These L-γ-methyleneglutamic acid amides hold promise as novel therapeutics for the treatment of multiple subtypes of breast cancer. Herein, we report our synthesis and evaluation of two series of tert-butyl ester and ethyl ester prodrugs of these L-γ-methyleneglutamic acid amides and the cyclic metabolite and its tert-butyl esters and ethyl esters on the three breast cancer cell lines MCF-7, SK-BR-3, and MDA-MB-231 and the nonmalignant MCF-10A breast cell line. These esters were found to suppress the growth of the breast cancer cells, but they were less potent compared to the L-γ-methyleneglutamic acid amides. Pharmacokinetic (PK) studies were carried out on the lead L-γ-methyleneglutamic acid amide to establish tissue-specific distribution and other PK parameters. Notably, this lead compound showed moderate exposure to the brain with a half-life of 0.74 h and good tissue distribution, such as in the kidney and liver. Therefore, the L-γ-methyleneglutamic acid amides were then tested on glioblastoma cell lines BNC3 and BNC6 and head and neck cancer cell lines HN30 and HN31. They were found to effectively suppress the growth of these cancer cell lines after 24 or 72 h of treatment in a concentration-dependent manner. These results suggest broad applications of the L-γ-methyleneglutamic acid amides in anticancer therapy.


Assuntos
Neoplasias da Mama , Pró-Fármacos , Humanos , Feminino , Amidas/química , Pró-Fármacos/farmacologia , Ésteres/farmacologia , Ésteres/química , Aminoácidos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral
5.
Eur J Med Chem ; 243: 114785, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36179400

RESUMO

Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and ß-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and ß-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.


Assuntos
Receptores Opioides kappa , Transtornos Relacionados ao Uso de Substâncias , Humanos , Depressão/tratamento farmacológico , Ligantes , beta-Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Antagonistas de Entorpecentes/farmacologia , Dor/tratamento farmacológico , Ansiedade/tratamento farmacológico , Analgésicos Opioides/farmacologia
6.
J Med Chem ; 65(5): 4058-4084, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35179893

RESUMO

Our first-generation CXCR4 antagonist TIQ15 was rationally modified to improve drug-like properties. Introducing a nitrogen atom into the aromatic portion of the tetrahydroisoquinoline ring led to several heterocyclic variants including the 5,6,7,8-tetrahydro-1,6-naphthyridine series, greatly reducing the inhibition of the CYP 2D6 enzyme. Compound 12a demonstrated the best overall properties after profiling a series of isomeric tetrahydronaphthyridine analogues in a battery of biochemical assays including CXCR4 antagonism, CYP 2D6 inhibition, metabolic stability, and permeability. The butyl amine side chain of 12a was substituted with various lipophilic groups to improve the permeability. These efforts culminated in the discovery of compound 30 as a potent CXCR4 antagonist (IC50 = 24 nM) with diminished CYP 2D6 activity, improved PAMPA permeability (309 nm/s), potent inhibition of human immunodeficiency virus entry (IC50 = 7 nM), a cleaner off-target in vitro safety profile, lower human ether a-go-go-related gene channel activity, and higher oral bioavailability in mice (% FPO = 27) compared to AMD11070 and TIQ15.


Assuntos
Citocromo P-450 CYP2D6 , Compostos Heterocíclicos , Animais , Citocromo P-450 CYP2D6/metabolismo , Camundongos , Receptores CXCR4/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
7.
ChemMedChem ; 17(7): e202100684, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35043597

RESUMO

Current common analgesics are mediated through the mu or kappa opioid receptor agonism. Unfortunately, selective mu or kappa receptor agonists often cause harmful side effects. However, ligands exhibiting dual agonism to the opioid receptors, such as to mu and kappa, or to mu and delta, have been suggested to temper undesirable adverse effects while retaining analgesic activity. Herein we report an introduction of various 6,5-fused rings to C2 of the salvinorin scaffold via an ester linker. In vitro studies showed that many of these compounds have dual agonism on kappa and mu opioid receptors. In vivo studies on the lead dual kappa and mu opioid receptor agonist demonstrated supraspinal thermal analgesic activity while avoiding anxiogenic effects in male mice, thus providing further strong evidence in support of the therapeutic advantages of dual opioid receptor agonists over selective opioid receptor agonists.


Assuntos
Receptores Opioides kappa , Receptores Opioides mu , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/farmacologia , Animais , Diterpenos Clerodânicos , Ésteres , Masculino , Camundongos , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistas
8.
J Neuroendocrinol ; 34(2): e13047, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34651359

RESUMO

Forty years into the HIV pandemic, approximately 50% of infected individuals still suffer from a constellation of neurological disorders collectively known as 'neuroHIV.' Although combination antiretroviral therapy (cART) has been a tremendous success, in its present form, it cannot eradicate HIV. Reservoirs of virus reside within the central nervous system, serving as sources of HIV virotoxins that damage mitochondria and promote neurotoxicity. Although understudied, there is evidence that HIV or the HIV regulatory protein, trans-activator of transcription (Tat), can dysregulate neurosteroid formation potentially contributing to endocrine dysfunction. People living with HIV commonly suffer from endocrine disorders, including hypercortisolemia accompanied by paradoxical adrenal insufficiency upon stress. Age-related comorbidities often onset sooner and with greater magnitude among people living with HIV and are commonly accompanied by hypogonadism. In the post-cART era, these derangements of the hypothalamic-pituitary-adrenal and -gonadal axes are secondary (i.e., relegated to the brain) and indicative of neuroendocrine dysfunction. We review the clinical and preclinical evidence for neuroendocrine dysfunction in HIV, the capacity for hormone therapeutics to play an ameliorative role and the future steroid-based therapeutics that may have efficacy as novel adjunctives to cART.


Assuntos
Infecções por HIV , HIV-1 , Sistema Nervoso Central/metabolismo , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , HIV-1/fisiologia , Humanos , Sistemas Neurossecretores/metabolismo , Pregnanolona/metabolismo , Pregnanolona/uso terapêutico
9.
ACS Med Chem Lett ; 12(10): 1605-1612, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34676043

RESUMO

This work surveys a variety of diamino-heterocycles as an isosteric replacement for the piperazine substructure of our previously disclosed piperarinyl-tetrahydroisoquinoline containing CXCR4 antagonists. A late-stage Buchwald coupling route was developed for rapid access to final compounds from commercial building blocks. Among 13 analogs in this study, compound 31 embodying an aza-piperazine linkage was found to have the best overall profile with potent CXCR4 inhibitory activity and favorable in vitro absorption, distribution, metabolism, and excretion (ADME) properties. An analysis of the calculated physiochemical parameters (ROF, cLogD) and the experimental ADME attributes of the analogs lead to the selection of 31 for pharmacokinetic studies in mice. Compared with the clinical compound AMD11070, compound 31 has no CYP450 3A4 or 2D6 inhibition, higher metabolic stability and PAMPA permeability, greatly improved physiochemical parameters, and superior oral bioavailability (%F = 24). A binding rationale for 31 within CXCR4 was elucidated from docking and molecular simulation studies.

10.
RSC Adv ; 11(13): 7115-7128, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33777357

RESUMO

In cancer cells, glutaminolysis is the primary source of biosynthetic precursors, fueling the TCA cycle with glutamine-derived α-ketoglutarate. The enhanced production of α-ketoglutarate is critical to cancer cells as it provides carbons for the TCA cycle to produce glutathione, fatty acids, and nucleotides, and contributes nitrogens to produce hexosamines, nucleotides, and many nonessential amino acids. Efforts to inhibit glutamine metabolism in cancer using amino acid analogs have been extensive. l-γ-Methyleneglutamine was shown to be of considerable biochemical importance, playing a major role in nitrogen transport in Arachis and Amorpha plants. Herein we report for the first time an efficient synthetic route to l-γ-methyleneglutamine and its amide derivatives. Many of these l-γ-methyleneglutamic acid amides were shown to be as efficacious as tamoxifen or olaparib at arresting cell growth among MCF-7 (ER+/PR+/HER2-), and SK-BR-3 (ER-/PR-/HER2+) breast cancer cells at 24 or 72 h of treatment. Several of these compounds exerted similar efficacy to olaparib at arresting cell growth among triple-negative MDA-MB-231 breast cancer cells by 72 h of treatment. None of the compounds inhibited cell growth in benign MCF-10A breast cells. Overall, N-phenyl amides and N-benzyl amides, such as 3, 5, 9, and 10, arrested the growth of all three (MCF-7, SK-BR-3, and MDA-MB-231) cell lines for 72 h and were devoid of cytotoxicity on MCF-10A control cells; N-benzyl amides with an electron withdrawing group at the para position, such as 5 and 6, inhibited the growth of triple-negative MDA-MB-231 cells commensurate to olaparib. These compounds hold promise as novel therapeutics for the treatment of multiple breast cancer subtypes.

11.
Neurochem Int ; 137: 104748, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32339667

RESUMO

Hypoxia induces reversible κ-opioid receptor (KOR) internalization similar to the internalization that is induced by KOR agonists. In the current study, we demonstrate that this KOR internalization is a protective mechanism via the ß-arrestin specific pathway in an oxygen-glucose deprivation (OGD) model. Mouse neuroblastoma Neuro2A cells were stably transfected with mouse KOR-tdTomato fusion protein (N2A-mKOR-tdT cells). Various concentrations of salvinorin A (SA), a highly selective KOR agonist, were given in the presence and absence of norbinaltorphimine (norBNI), which is a KOR antagonist, or Dyngo-4a (internalization inhibitor) or API-2 (Akt/Protein kinase B signaling inhibitor-2). Various concentrations of SA and RB-64 (22-thiocyanatosalvinorin A, selective for the G protein signaling pathway) were administered both in normoxic and hypoxic conditions. Autophagosomes and ultrastructural components of cells were observed using transmission electron microscopy (TEM). Cell viability, severity of cell injury, and levels of proteins related to the Akt signaling pathway were evaluated using live cell counting (by Cell Counting Kit-8), the lactic acid dehydrogenase (LDH) release rate, and Western blot analysis, respectively. SA promoted cell survival and attenuated OGD-induced cell injury. The Akt signaling pathway is activated by SA. KOR internalization, when blocked by norBNI or Dyngo-4a, increased LDH release and decreased cell viability under OGD. Treatment with SA significantly inhibited autophagy, and the effects of SA on autophagy were reversed by API-2 pretreatment. RB-64 in a low concentration without ß-arrestin recruitment did not reduce LDH release and increase cell viability as observed with SA. KOR internalization through ß-arrestin activation is a protective mechanism against OGD. The Akt pathway might play a critical role in modulating these protective effects by inhibiting autophagy.


Assuntos
Glucose/metabolismo , Oxigênio/metabolismo , Receptores Opioides kappa/efeitos dos fármacos , beta-Arrestinas/metabolismo , Animais , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glucose/farmacologia , Camundongos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta-Arrestinas/farmacologia
12.
Curr Top Med Chem ; 18(6): 494-504, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29788892

RESUMO

Cancer cells have a very different metabolism from that of normal cells from which they are derived. Their metabolism is elevated, which allows them to sustain higher proliferative rate and resist some cell death signals. This phenomenon, known as the "Warburg effect", has become the focus of intensive efforts in the discovery of new therapeutic targets and new cancer drugs. Both glycolysis and glutaminolysis pathways are enhanced in cancer cells. While glycolysis is enhanced to satisfy the increasing energy demand of cancer cells, glutaminolysis is enhanced to provide biosynthetic precursors for cancer cells. It was recently discovered that there is a tyrosine phosphorylation of a specific isoform of pyruvate kinase, the M2 isoform, that is preferentially expressed in all cancer cells, which results in the generation of pyruvate through a unique enzymatic mechanism that is uncoupled from ATP production. Pyruvate produced through this unique enzymatic mechanism is converted primarily into lactic acid, rather than acetyl-CoA for the synthesis of citrate, which would normally then enter the citric acid cycle. Inhibition of key enzymes in glycolysis and glutaminolysis pathways with small molecules has provided a novel but emerging area of cancer research and has been proven effective in slowing the proliferation of cancer cells, with several inhibitors being in clinical trials. This review paper will cover recent advances in the development of chemotherapeutic agents against several metabolic targets for cancer therapy, including glucose transporters, hexokinase, pyruvate kinase M2, glutaminase, and isocitrate dehydrogenase.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA