Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 5(2): 118-126, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28039162

RESUMO

Tumors expressing programmed death ligand 1 (PD-L1) interact with the corresponding negative-signal generating immune receptor on the surface of CD8 T cells, PD-1, thereby suppressing antitumor activity. Therapeutics blocking this interaction have shown promise in various cancers by restoring functional antitumor T-cell activity. We explored the degree of PD-L1, PD-1, and CD8 expression in a retrospective analysis of 29 clinical synovial sarcoma samples. Quantitative immunohistochemistry and multiplex immunofluorescence were used to determine relative quantification of CD8+ and PD-1+ T cells and PD-L1 expression within the intratumor area and the interface between the tumor and the surrounding nontumor tissue (i.e., invasive margin), and colocalization of these factors, respectively. PD-L1, PD-1, and CD8 cell densities in the tumor-invasive margins were significantly higher in the metastatic tumors than the primary tumors (P < 0.01), and PD-L1, PD-1, and CD8 cell densities were all significantly positively correlated with one other (P < 0.0001). PD-1 cell density in the tumor-invasive margin was significantly associated with worse progression-free survival. Multiplex immunofluorescence demonstrated coexpression of PD-1 and CD8 on lymphocytes within the invasive margin, as well as relative proximity between PD-1+ CD8 cells and PD-L1+ tumor cells. Our results provide a preclinical rationale for screening of patients with synovial sarcoma for the colocalization of CD8, PD-1, and PD-L1, which may be a marker for response to PD-1 blockade therapy. Cancer Immunol Res; 5(2); 118-26. ©2016 AACR.


Assuntos
Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Receptor de Morte Celular Programada 1/genética , Sarcoma Sinovial/genética , Sarcoma Sinovial/imunologia , Antígeno B7-H1/metabolismo , Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Metástase Neoplásica , Estadiamento de Neoplasias , Receptor de Morte Celular Programada 1/metabolismo , Estudos Retrospectivos , Sarcoma Sinovial/diagnóstico , Sarcoma Sinovial/mortalidade
2.
PLoS One ; 10(9): e0133610, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26402468

RESUMO

Pediatric bone and soft tissue sarcomas often display increased Akt phosphorylation through up regulation of insulin-like growth factor (IGF1) signaling. Additionally, Akt signaling has been linked to resistance to IGF1 receptor (IGF1R) and mTOR (mammalian target of rapamycin) inhibitors in sarcoma, further demonstrating the role of Akt in tumor survival. This suggests targeting components of the PI3K/Akt pathway may be an effective therapeutic strategy. Here, we investigated the in vitro activity of the pan-class I PI3K inhibitor buparlisib (BKM120) in pediatric bone and soft tissue sarcomas. Buparlisib inhibited activation of Akt and signaling molecules downstream of mTORC1 (mTOR complex 1) in Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma cell lines. Anti-proliferative effects were observed in both anchorage dependent and independent conditions and apoptosis was induced within 24 hours of drug treatment. Buparlisib demonstrated cytotoxicity as a single agent, but was found to be more effective when used in combination. Synergy was observed when buparlisib was combined with the IGF1R inhibitor NVP-AEW541 and the mTORC1 inhibitor rapamycin. The addition of NVP-AEW541 also further reduced phospho-Akt levels and more potently induced apoptosis compared to buparlisib treatment alone. Additionally, the combination of buparlisib with the MEK1/2 inhibitor trametinib resulted in synergy in sarcoma cell lines possessing MAPK pathway mutations. Taken together, these data indicate buparlisib could be a novel therapy for the treatment of pediatric bone and soft tissue sarcomas.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Morfolinas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Sinergismo Farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Mutação , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridonas/farmacologia , Pirimidinas/farmacologia , Pirimidinonas/farmacologia , Pirróis/farmacologia , Sarcoma/tratamento farmacológico , Sarcoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
3.
Mol Cancer Res ; 12(12): 1740-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25092916

RESUMO

UNLABELLED: Members of the Ewing sarcoma family of tumors (ESFT) contain tumor-associated translocations that give rise to oncogenic transcription factors, most commonly EWS/FLI1. EWS/FLI1 plays a dominant role in tumor progression by modulating the expression of hundreds of target genes. Here, the impact of EWS/FLI1 inhibition, by RNAi-mediated knockdown, on cellular signaling was investigated using mass spectrometry-based phosphoproteomics to quantify global changes in phosphorylation. This unbiased approach identified hundreds of unique phosphopeptides enriched in processes such as regulation of cell cycle and cytoskeleton organization. In particular, phosphotyrosine profiling revealed a large upregulation of STAT3 phosphorylation upon EWS/FLI1 knockdown. However, single-cell analysis demonstrated that this was not a cell-autonomous effect of EWS/FLI1 deficiency, but rather a signaling effect occurring in cells in which knockdown does not occur. Conditioned media from knockdown cells were sufficient to induce STAT3 phosphorylation in control cells, verifying the presence of a soluble factor that can activate STAT3. Cytokine analysis and ligand/receptor inhibition experiments determined that this activation occurred, in part, through an IL6-dependent mechanism. Taken together, the data support a model in which EWS/FLI1 deficiency results in the secretion of soluble factors, such as IL6, which activate STAT signaling in bystander cells that maintain EWS/FLI1 expression. Furthermore, these soluble factors were shown to protect against apoptosis. IMPLICATIONS: EWS/FLI1 inhibition results in a novel adaptive response and suggests that targeting the IL6/STAT3 signaling pathway may increase the efficacy of ESFT therapies.


Assuntos
Neoplasias Ósseas/metabolismo , Interleucina-6/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteômica/métodos , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Fator de Transcrição STAT3/metabolismo , Sarcoma de Ewing/metabolismo , Apoptose , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Comunicação Parácrina , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA