Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557014

RESUMO

Graphene is promising for next-generation devices. However, one of the primary challenges in realizing these devices is the scalable growth of high-quality few-layer graphene (FLG) on device-type wafers; it is difficult to do so while balancing both quality and affordability. High-quality graphene is grown on expensive SiC bulk crystals, while graphene on SiC thin films grown on Si substrates (GOS) exhibits low quality but affordable cost. We propose a new method for the growth of high-quality FLG on a new template named "hybrid SiC". The hybrid SiC is produced by bonding a SiC bulk crystal with an affordable device-type wafer and subsequently peeling off the SiC bulk crystal to obtain a single-crystalline SiC thin film on the wafer. The quality of FLG on this hybrid SiC is comparable to that of FLG on SiC bulk crystals and much higher than of GOS. FLG on the hybrid SiC exhibited high carrier mobilities, comparable to those on SiC bulk crystals, as anticipated from the linear band dispersions. Transistors using FLG on the hybrid SiC showed the potential to operate in terahertz frequencies. The proposed method is suited for growing high-quality FLG on desired substrates with the aim of realizing graphene-based high-speed devices.

2.
Opt Express ; 12(20): 4775-80, 2004 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-19484030

RESUMO

A new silicon based waveguide with full CMOS compatibility is developed to fabricate an on-chip Bragg cladding waveguide that has an oxide core surrounded by a high index contrast cladding layers. The cladding consists of several dielectric bilayers, where each bilayer consists of a high index-contrast pair of layers of Si and Si3N4. This new waveguide guides light based on omnidirectional reflection, reflecting light at any angle or polarization back into the core. Its fabrication is fully compatible with current microelectronics processes. In principle, a core of any low-index material can be realized with our novel structure, including air. Potential applications include tight turning radii, high power transmission, and dispersion compensation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA