Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Technol Cancer Res Treat ; 23: 15330338241250317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38780251

RESUMO

Epigenetic machinery is a cornerstone in normal cell development, orchestrating tissue-specific gene expression in mammalian cells. Aberrations in this intricate landscape drive substantial changes in gene function, emerging as a linchpin in cancer etiology and progression. While cancer was conventionally perceived as solely a genetic disorder, its contemporary definition encompasses genetic alterations intertwined with disruptive epigenetic abnormalities. This review explores the profound impact of DNA methylation, histone modifications, and noncoding RNAs on fundamental cellular processes. When these pivotal epigenetic mechanisms undergo disruption, they intricately guide the acquisition of the 6 hallmark characteristics of cancer within seemingly normal cells. Leveraging the latest advancements in decoding these epigenetic intricacies holds immense promise, heralding a new era in developing targeted and more efficacious treatment modalities against cancers driven by aberrant epigenetic modifications.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patologia , Histonas/metabolismo , Histonas/genética , Animais , Código das Histonas , RNA não Traduzido/genética
2.
Int J Biol Macromol ; 271(Pt 2): 132525, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797293

RESUMO

Anthropogenic activities have led to a drastic shift from natural fuels to alternative renewable energy reserves that demand heat-stable cellulases. Cellobiohydrolase is an indispensable member of cellulases that play a critical role in the degradation of cellulosic biomass. This article details the process of cloning the cellobiohydrolase gene from the thermophilic bacterium Caldicellulosiruptor bescii and expressing it in Escherichia coli (BL21) CondonPlus DE3-(RIPL) using the pET-21a(+) expression vector. Multi-alignments and structural modeling studies reveal that recombinant CbCBH contained a conserved cellulose binding domain III. The enzyme's catalytic site included Asp-372 and Glu-620, which are either involved in substrate or metal binding. The purified CbCBH, with a molecular weight of 91.8 kDa, displayed peak activity against pNPC (167.93 U/mg) at 65°C and pH 6.0. Moreover, it demonstrated remarkable stability across a broad temperature range (60-80°C) for 8 h. Additionally, the Plackett-Burman experimental model was employed to assess the saccharification of pretreated sugarcane bagasse with CbCBH, aiming to evaluate the cultivation conditions. The optimized parameters, including a pH of 6.0, a temperature of 55°C, a 24-hour incubation period, a substrate concentration of 1.5% (w/v), and enzyme activity of 120 U, resulted in an observed saccharification efficiency of 28.45%. This discovery indicates that the recombinant CbCBH holds promising potential for biofuel sector.

3.
Mol Biotechnol ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461181

RESUMO

Esterases are hydrolases that contribute to the hydrolysis of ester bonds into both water-soluble acyl esters and emulsified glycerol-esters containing short-chain acyl groups. They have garnered significant attention from biotechnologists and organic chemists due to their immense commercial value. Esterases, with their diverse and significant properties, have become highly sought after for various industrial applications. Synthesized ubiquitously by a wide range of living organisms, including animals, plants, and microorganisms, these enzymes have found microbial esterases to be the preferred choice in industrial settings. The cost-effective production of microbial esterases ensures higher yields, unaffected by seasonal variations. Their applications span diverse sectors, such as food manufacturing, leather tanneries, paper and pulp production, textiles, detergents, cosmetics, pharmaceuticals, biodiesel synthesis, bioremediation, and waste treatment. As the global trend shifts toward eco-friendly and sustainable practices, industrial processes are evolving with reduced waste generation, lower energy consumption, and the utilization of biocatalysts derived from renewable and unconventional raw materials. This review explores the background, structural characteristics, thermostability, and multifaceted roles of bacterial esterases in crucial industries, aiming to optimize and analyze their properties for continued successful utilization in diverse industrial processes. Additionally, recent advancements in esterase research are overviewed, showcasing novel techniques, innovations, and promising areas for further exploration.

4.
Int J Biol Macromol ; 265(Pt 1): 130993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508567

RESUMO

Hemicellulases are enzymes that hydrolyze hemicelluloses, common polysaccharides in nature. Thermophilic hemicellulases, derived from microbial strains, are extensively studied as natural biofuel sources due to the complex structure of hemicelluloses. Recent research aims to elucidate the catalytic principles, mechanisms and specificity of hemicellulases through investigations into their high-temperature stability and structural features, which have applications in biotechnology and industry. This review article targets to serve as a comprehensive resource, highlighting the significant progress in the field and emphasizing the vital role of thermophilic hemicellulases in eco-friendly catalysis. The primary goal is to improve the reliability of hemicellulase enzymes obtained from thermophilic bacterial strains. Additionally, with their ability to break down lignocellulosic materials, hemicellulases hold immense potential for biofuel production. Despite their potential, the commercial viability is hindered by their high enzyme costs, necessitating the development of efficient bioprocesses involving waste pretreatment with microbial consortia to overcome this challenge.


Assuntos
Bactérias , Biocombustíveis , Reprodutibilidade dos Testes , Glicosídeo Hidrolases/química , Lignina
5.
Mol Biotechnol ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117395

RESUMO

Depression, a global health concern with significant implications for suicide rates, remains challenging to treat effectively with conventional pharmacological options. The existing pharmaceutical interventions for these illnesses need daily dosing, are accompanied by various adverse effects, and may exhibit limited efficacy in certain cases. However, hope emerges from an unlikely source-Psilocybin, a natural hallucinogen found in certain mushrooms. Recently, this enigmatic compound has garnered attention for its potential therapeutic benefits in addressing various mental health issues, including depression. Psilocybin alters mood, cognition, and perception by acting on a particular subtype of serotonin receptors in the brain. It's feasible that these shifts in consciousness will promote healing development, offering a novel approach to depression management. This comprehensive review explores psilocybin, derived from specific mushrooms, and its implications in the treatment of depression. The study examines new perspectives and therapeutic possibilities surrounding psilocybin, addressing existing gaps in academic literature. It delves into its biosynthesis, unique mechanisms of action, therapeutic applications, and anti-depressive effects. By uncovering the potential of this mind-altering substance, the review aims to advance psychiatric care, offering hope to those globally affected by depression.

6.
Microb Pathog ; 179: 106088, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004965

RESUMO

Significant efforts and initiatives were already made in the health care systems, however in the last few years; our world is facing emergences of viral infections which potentially leading to considerable challenges in terms of higher morbidity, mortality, increased and considerable financial loads on the affected populations. Over ten major epidemics or pandemics have been recorded in the twenty-first century, the ongoing coronavirus pandemic being one of them. Viruses being distinct obligate pathogens largely dependent on living beings are considered as one of the prominent causes of death globally. Although effective vaccines and antivirals have led to the eradication of imperative viral pathogens, the emergences of new viral infections as well as novel drug-resistant strains have necessitated the implementation of ingenious and efficient therapeutic approaches to treat viral outbreaks in the future. Nature being a constant source of tremendous therapeutical resources has inspired us to develop multi-target antiviral drugs, overcoming the challenges and limitations faced by pharmaceutical industry. Recent breakthroughs in the understanding of the cellular and molecular mechanisms of viral reproduction have laid the groundwork for potential treatment approaches including antiviral gene therapy relying on the application of precisely engineered nucleic acids for disabling pathogen replication. The development of RNA interference and advancements in genome manipulating tools have proven to be especially significant in this regard. In this review, we discussed mode of actions and pathophysiological events associated with the viral infections; followed by distributions, and advancement made towards the detection strategies for timely diagnosis. In the later section, current approaches to cope up the viral pathogens and their key limitations have also been elaborated. Lastly, we also explored some novel and potential targets to treat such infections, where attentions were made on next generation gene editing technologies.


Assuntos
COVID-19 , Viroses , Vírus , Humanos , Viroses/diagnóstico , Viroses/tratamento farmacológico , Antivirais/uso terapêutico , Vírus/genética , Edição de Genes
7.
Anal Biochem ; 671: 115150, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054862

RESUMO

DNA polymerases are the enzymes able to replicate the genetic information in nucleic acid. As a result, they are necessary to copy the complete genome of every living creature before cell division and sustain the integrity of the genetic information throughout the life of each cell. Any organism that uses DNA as its genetic information, whether unicellular or multicellular, requires one or more thermostable DNA polymerases to thrive. Thermostable DNA polymerase is important in modern biotechnology and molecular biology because it results in methods such as DNA cloning, DNA sequencing, whole genome amplification, molecular diagnostics, polymerase chain reaction, synthetic biology, and single nucleotide polymorphism detection. There are at least 14 DNA-dependent DNA polymerases in the human genome, which is remarkable. These include the widely accepted, high-fidelity enzymes responsible for replicating the vast majority of genomic DNA and eight or more specialized DNA polymerases discovered in the last decade. The newly discovered polymerases' functions are still being elucidated. Still, one of its crucial tasks is to permit synthesis to resume despite the DNA damage that stops the progression of replication-fork. One of the primary areas of interest in the research field has been the quest for novel DNA polymerase since the unique features of each thermostable DNA polymerase may lead to the prospective creation of novel reagents. Furthermore, protein engineering strategies for generating mutant or artificial DNA polymerases have successfully generated potent DNA polymerases for various applications. In molecular biology, thermostable DNA polymerases are extremely useful for PCR-related methods. This article examines the role and importance of DNA polymerase in a variety of techniques.


Assuntos
Biotecnologia , DNA Polimerase Dirigida por DNA , Humanos , Estudos Prospectivos , DNA Polimerase Dirigida por DNA/metabolismo , Biotecnologia/métodos , Engenharia de Proteínas , Reação em Cadeia da Polimerase , Replicação do DNA
8.
Curr Protein Pept Sci ; 24(2): 130-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36635927

RESUMO

BACKGROUND: With the advent of cancer diagnostics and therapeutics, circular RNAs (circRNAs) are swiftly becoming one of the significant regulators of gene expression and cellular functions. A plethora of multiple molecular mechanisms has been observed to elicit their influence. OBJECTIVE: Circular RNAs (circRNAs) are a distinct category of endogenous noncoding RNAs designed as a result of exon back splicing events in precursor's mRNAs (pre-mRNAs) and are widely distributed in the transcriptome of eukaryotic cells. METHODS: Although the role of circRNAs is still in its infancy, they serve as microRNA sponges, protein scaffolds, and modulators of transcription and splicing and occasionally as templates for the production of peptides. RESULTS: It is well known that abnormal circRNA expression is prevalent in malignancies and has been linked to a number of pathophysiological aspects of cancer. This extensively anomalous expression assists in cellular proliferation and growth, sustaining cellular invasiveness and bypassing cellular senescence and death, thus advocating their promise to serve as both clinical biomarkers and therapeutic targets. CONCLUSION: An overview of the recent status of circRNA will aid in the identification of new biomarkers, therapeutic targets, and their prospect in the diagnosis and therapy of disease. In this review article, we discuss the functional mechanisms of circRNAs, their biomarker potential in disease diagnosis and prognosis, therapeutic approaches, and the associated limitations.


Assuntos
MicroRNAs , Neoplasias , Humanos , RNA Circular/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , MicroRNAs/genética , Biomarcadores , Splicing de RNA
9.
Mol Biotechnol ; 65(2): 227-242, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35474409

RESUMO

Genome-editing technology has enabled scientists to make changes in model organisms' DNA at the genomic level to get biotechnologically important products from them. Most commonly employed technologies for this purpose are transcription activator like effector nucleases (TALENs), homing-endonucleases or meganucleases, zinc finger nucleases (ZFNs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9). Among these tools, CRISPR/Cas9 is most preferred because it's easy to use, has a small mutation rate, has great effectiveness, low cost of development, and decreased rate of advancement. CRISPR/Cas9 has a lot of applications in plants, animals, humans, and microbes. It also has applications in many fields such as horticulture, cancer, food biotechnology, and targeted human genome treatments. CRISPR technology has shown great potential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic to provide early and easy detection methods, possible treatment, and vaccine development. In the present review, genome-editing tools with their basic assembly and features have been discussed. Exceptional notice has been paid to CRISPR technology on basis of its structure and significant applications in humans, plants, animals, and microbes such as bacteria, viruses, and fungi. The review has also shed a little light on current CRISPR challenges and future perspectives.


Assuntos
COVID-19 , Sistemas CRISPR-Cas , Animais , Humanos , Sistemas CRISPR-Cas/genética , SARS-CoV-2/genética , Edição de Genes/métodos , Plantas/genética , Tecnologia
10.
Microb Pathog ; 174: 105923, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36526035

RESUMO

Antibiotic resistance has become an indispensably alarming menace to the global community. The primary factors are overuse and abuse of antibiotics, lack of novel medicines under development, the health care industry's focus on profit, and the absence of diagnostic testing prior to the prescription of antibiotics. Additionally, over the past few decades, the main factors contributing to the global spread of antibiotic resistance have been the overuse of antibiotics in livestock and other animals, drug efficacy, development of fewer new vaccines, environmental toxicity, transmission through travel, and lack of funding for healthcare research and development. These factors have accelerated resistance in microorganisms through structural and functional modifications in bacteria such as reduced drug permeability, increased efflux pumps, enzymatic antibiotic modification, and change in drug target, intracellular infection, and biofilm creation. There has been an increase in resistance during the pandemic and among cancer patients due to improper prescriptions. A number of modern therapeutic alternatives have been developed to curb widespread antibiotic resistance such as nanoparticle, bacteriophage, and antimicrobial biochemical approaches. It is high time to explore new alternatives to curtail enormous increase in resistant pathogens which could be an incurable global confrontation. This review highlights the complete insight on the global drivers of resistance along with the modes of action and impacts, finally discussing the latest therapeutic alternatives.


Assuntos
Bactérias , Pandemias , Animais , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Viagem
11.
J Biomol Struct Dyn ; 41(18): 8738-8750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36300501

RESUMO

Dengue virus has emerged as infectious mosquito borne disease involved in lowering platelets and white blood cells (WBC) count particularly. The genome structure is based on several structural and non-structural proteins essential for viral replication and progeny. One of the major proteins of replication is non-structural protein 3 (NS3) that transforms polyproteins into functional proteins with a cofactor non-structural protein (NS2B). Heat Shock Protein 70 (HSP70), is a human protein that assists in replication, viral entry and virion synthesis. Therefore, to inhibit the spread of dengue infection, there is a need of antivirals targeting replication proteins and other human proteins that help in dengue virus multiplication. By systemic approach based on molecular docking, ADMET (absorption, distribution, metabolism, excretion and toxicity) properties and molecular dynamic simulation (MD), potent inhibitors can be predicted. Inhibition of NS2B/NS3 dengue and HSP70 proteins involved in multiple steps in dengue virus progression can be prevented by using different phytochemicals. Molecular docking was performed using AutoDock Vina, PatchDock, and SwissDock. Interactions of obtained complex were observed in PyMOL and PLIP. Validation was checked by PROCHEK, simulation was performed using iMODS followed by preclinical testing by admetSAR. Ladanein, a flavonoid of Orthosiphon aristatus, was obtained as the lead compound to inhibit major replication protein of dengue virus with inhibitory potential against HSP70 protein. In summary, various in silico approaches were used to obtain the best phytochemical having anti-dengue potential.Communicated by Ramaswamy H. Sarma.

12.
Mol Biotechnol ; 65(4): 521-543, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36319931

RESUMO

Microbial lipases expedite the hydrolysis and synthesis of long-chain acyl esters. They are highly significant commercial biocatalysts to biotechnologists and organic chemists. The market size of lipase is anticipated to reach $590 million by 2023. This is all owing to their versatility in properties, including stability in organic solvents, interfacial activation in micro-aqueous environments, high substrate specificity, and activity in even non-aqueous milieu. Lipases are omnipresent and synthesized by various living organisms, including animals, plants, and microorganisms. Microbial lipases are the preferred choice for industrial applications as they entail low production costs, higher yield independent of seasonal changes, easier purification practices, and are capable of being genetically modified. Microbial lipases are employed in several common industries, namely various food manufactories (dairy, bakery, flavor, and aroma enhancement, etc.), leather tanneries, paper and pulp, textiles, detergents, cosmetics, pharmaceuticals, biodiesel synthesis, bioremediation and waste treatment, and many more. In recent decades, circumspection toward eco-friendly and sustainable energy has led scientists to develop industrial mechanisms with lesser waste/effluent generation, minimal overall energy usage, and biocatalysts that can be synthesized using renewable, low-cost, and unconventional raw materials. However, there are still issues regarding the commercial use of lipases which make industrialists wary and sometimes even switch back to chemical catalysis. Industrially relevant lipase properties must be further optimized, analyzed, and explored to ensure their continuous successful utilization. This review comprehensively describes the general background, structural characteristics, classifications, thermostability, and various roles of bacterial lipases in important industries.


Assuntos
Biotecnologia , Lipase , Animais , Lipase/química , Bactérias/genética , Indústrias , Hidrólise
13.
Sci Rep ; 12(1): 19087, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352060

RESUMO

The World Health Organization categorized SARS-CoV-2 as a variant of concern, having numerous mutations in spike protein, which have been found to evade the effect of antibodies stimulated by the COVID-19 vaccine. The susceptibility to omicron variant by immunization-induced antibodies are direly required for risk evaluation. To avoid the risk of arising viral illness, the construction of a specific vaccine that triggers the production of targeted antibodies to combat infection remains highly imperative. The aim of the present study is to develop a particular vaccine exploiting bioinformatics approaches which can target B- and T-cells epitopes. Through this approach, novel epitopes of the S protein-SARS-CoV-2 were predicted for the development of a multiple epitope vaccine. Multiple epitopes were selected on the basis of toxicity, immunogenicity and antigenicity, and vaccine subunit was constructed having potential immunogenic properties. The epitopes were linked with 3 types of linker EAAAK, AAY and GPGPG for vaccine construction. Subsequently, vaccine structure was docked with the receptor and cloned in a pET-28a (+) vector. The constructed vaccine was ligated in pET-28a (+) vector in E. coli using the SnapGene tool for the expression study and a good immune response was observed. Several computational tools were used to predict and analyze the vaccine constructed by using spike protein sequence of omicrons. The current study identified a Multi-Epitope Vaccine (MEV) as a significant vaccine candidate that could potentially help the global world to combat SARS-CoV-2 infections.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2/genética , Vacinas contra COVID-19/genética , Glicoproteína da Espícula de Coronavírus/química , COVID-19/prevenção & controle , Biologia Computacional , Escherichia coli , Epitopos de Linfócito B , Imunogenicidade da Vacina , Epitopos de Linfócito T
14.
Technol Cancer Res Treat ; 21: 15330338221132078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36254536

RESUMO

Cancer is a genetic disease stemming from genetic and epigenetic mutations and is the second most common cause of death across the globe. Clustered regularly interspaced short palindromic repeats (CRISPR) is an emerging gene-editing tool, acting as a defense system in bacteria and archaea. CRISPR/Cas9 technology holds immense potential in cancer diagnosis and treatment and has been utilized to develop cancer disease models such as medulloblastoma and glioblastoma mice models. In diagnostics, CRISPR can be used to quickly and efficiently detect genes involved in various cancer development, proliferation, metastasis, and drug resistance. CRISPR/Cas9 mediated cancer immunotherapy is a well-known treatment option after surgery, chemotherapy, and radiation therapy. It has marked a turning point in cancer treatment. However, despite its advantages and tremendous potential, there are many challenges such as off-target effects, editing efficiency of CRISPR/Cas9, efficient delivery of CRISPR/Cas9 components into the target cells and tissues, and low efficiency of HDR, which are some of the main issues and need further research and development for completely clinical application of this novel gene editing tool. Here, we present a CRISPR/Cas9 mediated cancer treatment method, its role and applications in various cancer treatments, its challenges, and possible solution to counter these challenges.


Assuntos
Edição de Genes , Neoplasias , Animais , Sistemas CRISPR-Cas/genética , Terapia Genética , Humanos , Imunoterapia , Camundongos , Neoplasias/genética , Neoplasias/terapia
15.
Environ Sci Pollut Res Int ; 29(58): 86913-86932, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271998

RESUMO

Since the dawn of century, tons of keratin bio-waste is generated by the poultry industry annually, and they end up causing environmental havoc. Keratins are highly flexible fibrous proteins which exist in α- and ß- forms and provide mechanical strength and stability to structural appendages. The finding of broad-spectrum protease, keratinase, from thermophilic bacteria and fungi, has provided an eco-friendly solution to hydrolyze the peptide bonds in highly recalcitrant keratinous substances such as nails, feathers, claws, and horns into valuable amino acids. Microorganisms produce these proteolytic enzymes by techniques of solid-state and submerged fermentation. However, solid-state fermentation is considered as a yielding approach for the production of thermostable keratinases. This review prioritized the molecular and biochemical properties of microbial keratinases, and the role of keratinases in bringing prodigious impact for the sustainable progress of the economy. It also emphasizes on the current development in keratinase production with the focus to improve the biochemical properties related to enzyme's catalytic activity and stability, and production of mutant and cloned microbial strains to improve the yield of keratinases. Recently, multitude molecular approaches have been employed to enhance enzyme's productivity, activity, and thermostability which makes them suitable for pharmaceutical industry and for the production of animal feed, organic fertilizers, biogas, clearing of animal hides, and detergent formulation. Hence, it can be surmised that microbial keratinolytic enzymes are the conceivable candidates for numerous commercial and industrial applications.


Assuntos
Queratinas , Peptídeo Hidrolases , Animais , Peptídeo Hidrolases/metabolismo , Queratinas/metabolismo , Biotecnologia/métodos , Plumas/metabolismo , Responsabilidade Social , Concentração de Íons de Hidrogênio
16.
Bioorg Chem ; 127: 105942, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35709577

RESUMO

Nature is a dexterous and prolific chemist for cataloging a number of hostile niches that are the ideal residence of various thermophiles. Apart from having other species, these subsurface environments are considered a throne of bacterial genus Thermotoga. The genome sequence of Thermotogales encodes complex and incongruent clusters of glycoside hydrolases (GHs), which are superior to their mesophilic counterparts and play a prominent role in various applications due to their extreme intrinsic stability. They have a tremendous capacity to use a wide variety of simple and multifaceted carbohydrates through GHs, formulate fermentative hydrogen and bioethanol at extraordinary yield, and catalyze high-temperature reactions for various biotechnological applications. Nevertheless, no stringent rules exist for the thermo-stabilization of biocatalysts present in the genus Thermotoga. These enzymes endure immense attraction in fundamental aspects of how these polypeptides attain and stabilize their distinctive three-dimensional (3D) structures to accomplish their physiological roles. Moreover, numerous genome sequences from Thermotoga species have revealed a significant fraction of genes most closely related to those of archaeal species, thus firming a staunch belief of lateral gene transfer mechanism. However, the question of its magnitude is still in its infancy. In addition to GHs, this genus is a paragon of encapsulins which carry pharmacological and industrial significance in the field of life sciences. This review highlights an intricate balance between the genomic organizations, factors inducing the thermostability, and pharmacological and industrial applications of GHs isolated from genus Thermotoga.


Assuntos
Bactérias , Glicosídeo Hidrolases , Bactérias/genética , Glicosídeo Hidrolases/genética , Thermotoga
17.
Mol Biotechnol ; 64(10): 1055-1075, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35397055

RESUMO

The ability of chitinases to degrade the second most abundant polymer, chitin, into potentially useful chitooligomers and chitin derivatives has not only rendered them fit for chitinous waste management but has also made them important from industrial point of view. At the same time, they have also been recognized to have an imperative role as promising biocontrol agents for controlling plant diseases. As thermostability is an important property for an industrially important enzyme, various bacterial and fungal sources are being exploited to obtain such stable enzymes. These stable enzymes can also play a role in agriculture by maintaining their stability under adverse environmental conditions for longer time duration when used as biocontrol agent. Biotechnology has also played its role in the development of recombinant chitinases with enhanced activity, thermostability, fungicidal and insecticidal activity via recombinant DNA techniques. Furthermore, a relatively new approach of generating pathogen-resistant transgenic plants has opened new ways for sustainable agriculture by minimizing the yield loss of valuable crops and plants. This review focuses on the potential applications of thermostable and recombinant microbial chitinases in industry and agriculture.


Assuntos
Quitinases , Agricultura , Biotecnologia/métodos , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
18.
Appl Biochem Biotechnol ; 194(5): 2336-2356, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35022963

RESUMO

Laccases are blue multicopper oxidases that oxidize a wide range of phenolic as well as non-phenolic substrates in the presence or absence of mediators. They occur in various species of bacteria, fungi, insects, and plants; bacterial laccases show high substrate specificity. Bacteria produce these enzymes either extracellularly or intracellularly and exhibit stability to a wide range of pH and temperature. Therefore, they are suitable for various industrial processes such as food, textile, and paper and pulp industry. They are also valuable for producing biofuels, pharmaceuticals, biosensors, and degradation of various environmental pollutants and xenobiotics compounds. Since bacterial laccases are more versatile in the sense of nutritional needs and ecological factors, their use can provide a promising solution to various problems related to industry and the field of biotechnology. However, there is a need for a thorough understanding of the chemistry and activity of bacterial laccases to enable their full potential use in bioremediation and biofuel production.


Assuntos
Biotecnologia , Lacase , Bactérias/metabolismo , Fungos/metabolismo , Indústrias , Lacase/metabolismo
19.
J Virol Methods ; 300: 114375, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34838536

RESUMO

In late 2019, following the emergence of a ß-originated SARS-CoV-2, phylogenetic and evolutionary approaches have been demonstrated to strengthen the diagnostic and prophylactic stratagem of COVID-19 at an unprecedented level. Despite its clinical prominence, the SARS-CoV-2 gene set remains largely irrefutable by impeding the dissection of COVID-19 biology. However, many pieces of molecular and serological evidence have predicted that SARS-CoV-2 related viruses carry their roots from bats and pangolins of South East Asia. Analysis of viral genome predicts that point mutations at a rate of 10-4 nucleotides per base in the receptor-binding domain allow the emergence of new SARS-CoV-2 genomic variants at regular intervals. Research in the evolution of molecular pathways involved in emergence of pandemic is critical for the development of therapeutics and vaccines as well as the prevention of future zoonosis. By determining the phyletic lineages of the SARS-CoV-2 genomic variants and those of the conserved regions in the accessory and spike proteins of all the SARS-related coronaviruses, a universal vaccine against all human coronaviruses could be formulated which would revolutionize the field of medicine. This review highlighted the current development and future prospects of antiviral drugs, inhibitors, mesenchymal stem cells, passive immunization, targeted immune therapy and CRISPR-Cas-based prophylactic and therapeutic strategies against SARS-CoV-2. However, further investigations on Covid-19 pathogenesis is required for the successful fabrication of successful antivirals.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais , Humanos , Pandemias , Filogenia
20.
Curr Protein Pept Sci ; 22(8): 599-619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34102968

RESUMO

BACKGROUND: MicroRNAs (miRNA) belong to the substantial class of posttranscriptional gene regulators with decisive functions in typical cellular and disease progressions. They are short RNA molecules that are not translated into proteins but bind to the complementary sites of various mRNAs, thus blocking them and leading to translational inhibition. OBJECTIVE: These miRNA molecules act as signatory molecules or biomarkers for various types of malignancies. Different miRNAs are involved in different cancer-linked pathways depending on the nature, stage, and kind of cancer. The objective of this article is to discuss and review the role and significance of various miRNAs in two of the most prominent cancers; breast and ovarian cancer. METHODS: The role of miRNAs in the instigation, propagation, and metastasis of melanoma has been elucidated. RESULTS: This article focuses on the up- and down-regulation of various miRNAs in breast and ovarian cancer, with stress on diversity in their occurrence and specificity in their threshold levels in certain types and stages of cancer, suggesting their potential role as an effective diagnostic and treatment tool for cancer. CONCLUSION: Considering all the aforementioned information, it can be concluded that miRNAs can act as potential biomarkers for the diagnosis of breast and ovarian cancers.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , MicroRNAs/metabolismo , Neoplasias Ovarianas/metabolismo , Biomarcadores Tumorais/análise , Neoplasias da Mama/diagnóstico , Feminino , Humanos , MicroRNAs/análise , Neoplasias Ovarianas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA