Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Middle East J Dig Dis ; 16(1): 12-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39050096

RESUMO

Coronavirus is a new virus that has affected human life on a large scale; it has infected millions of people and killed hundreds of thousands of people. In contrast, among cancers, stomach neoplasia is the most common cancer of the upper gastrointestinal (UGI) tract. COVID-19 disease has disrupted the optimal management of patients with cancer. Metastasis, deterioration of the patient's nutritional status, UGI bleeding, and increased surgical complications are all consequences of delayed treatment of patients with gastric cancer. However, there is still insufficient evidence on the immunogenicity of the vaccine and the protection provided by coronavirus vaccines in patients with cancer, especially those with immunodeficiency or those who are treated for certain types of cancers. Also, as part of the prevention and control of COVID-19 disease, nutritional support for patients with gastrointestinal cancer is particularly important, and the psychological and physiological limitations caused by the disease duration are hurting the well-being of patients. Therefore, the assessment of the impact of the coronavirus on cancer should be treated as an important issue, and healthcare professionals should be prepared to deal with the long-term effects of the coronavirus disease.

2.
Cell Biol Int ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922769

RESUMO

Breast cancer (BC) remains a significant public health concern globally, with a high number of reported cases and a substantial number of deaths every year. Accumulating reactive oxygen species (ROS) and oxidative stress are related to BC and the Glutathione S-transferases Mu (GSTM) family is one of the most important enzymatic detoxifiers associated with many cancers. In this study, UALCAN, Kaplan-Meier plotter, bc-GenExMiner, cBioPortal, STRING, Enrichr, and TIMER databases were employed to carry out a comprehensive bioinformatic analysis and provide new insight into the prognostic value of GSTMs in BC. GSTM2-5 genes in mRNA and protein levels were found to be expressed at lower levels in breast tumors compared to normal tissues, and reduction in mRNA levels is linked to shorter overall survival (OS) and relapse-free survival (RFS). The lower mRNA levels of GSTMs were strongly associated with the worse Scarff-Bloom-Richardson (SBR) grades (p < 0.0001). The mRNA levels of all five GSTMs were substantially higher in estrogen receptor (ER)-positive and progesterone receptor (PR)-positive compared to ER-negative and PR-negative BC patients. As well, when nodal status was compared, GSTM1, GSTM3, and GSTM5 were significantly higher in nodal-positive BC patients (p < .01). Furthermore, GSTM4 had the most gene alteration (4%) among other family members, and GSTM5 showed the strongest correlation with CD4+ T cells (Cor= .234, p = 2.22e-13). In conclusion, our results suggest that GSTM family members may be helpful as biomarkers for prognosis and as therapeutic targets in BC.

3.
Viral Immunol ; 37(5): 221-239, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841885

RESUMO

Human papillomavirus (HPV) is a circular, double-stranded DNA virus and recognized as the most prevalent sexually transmitted infectious agent worldwide. The HPV life cycle encompasses three primary stages. First, the virus infiltrates the basal cells of the stratified epidermis. Second, there is a low-level expression of viral genes and preservation of the viral genome in the basal layer. Lastly, productive replication of HPV occurs in differentiated cells. An effective immune response, involving various immune cells, including innate immunity, keratinocytes, dendritic cells, and natural killer T cells, is instrumental in clearing HPV infection and thwarting the development of HPV-associated tumors. Vaccines have demonstrated their efficacy in preventing genital warts, high-grade precancerous lesions, and cancers in females. In males, the vaccines can also aid in preventing genital warts, anal precancerous lesions, and cancer. This comprehensive review aims to provide a thorough and detailed exploration of HPV infections, delving into its genetic characteristics, life cycle, pathogenesis, and the role of high-risk and low-risk HPV strains. In addition, this review seeks to elucidate the intricate immune interactions that govern HPV infections, spanning from innate immunity to adaptive immune responses, as well as examining the evasion mechanisms used by the virus. Furthermore, the article discusses the current landscape of HPV vaccines and common treatments, contributing to a holistic understanding of HPV and its associated diseases.


Assuntos
Papillomaviridae , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/imunologia , Vacinas contra Papillomavirus/administração & dosagem , Feminino , Papillomaviridae/imunologia , Papillomaviridae/genética , Cobertura Vacinal , Neoplasias/imunologia , Neoplasias/terapia , Masculino , Imunidade Inata , Imunidade Adaptativa
4.
Iran Biomed J ; 27(4): 167-72, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37430248

RESUMO

Background: Liver transplantation and surgical resection are two major strategies for treatment of hepatocellular carcinoma (HCC) patients. One approach to treating HCC is the suppression of metastasis to other tissues. Herein, we aimed to study the effect of miR-4270 inhibitor on migration of HepG2 cells as well as activity of matrix metalloproteinase (MMP) these cells in order to find a strategy to suppress metastasis in future. Methods: HepG2 cells were treated with 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 nM of miR-4270 inhibitor, and then the cell viability was measured by trypan blue staining. Afterwards, cell migration and MMP activity of HepG2 cells were assessed by wound healing assay and zymography, respectively. The MMP gene expression was determined by real-time reverse transcription polymerase chain reaction. Results: Results showed that miR-4270 inhibitor decreased the cell viability of HepG2 cells in a concentration-dependent manner. Also, inhibition of the miR-4270 reduced invasion, MMP activity, and expression of MMP genes in HepG2 cells, respectively. Conclusion: Our findings suggest that miR-4270 inhibitor decreases in vitro migration, which could help find a new approach for HCC therapy patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células Hep G2 , Linhagem Celular , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células
5.
Iran Biomed J ; 27(2 & 3): 100-7, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070617

RESUMO

Background: MicroRNAs (miRNAs) are significant regulatory factors in stem cell proliferation, and change in miRNA expression influences the cancer stem cell viability and gene expression. Herein, we evaluated the effect of the hsa-miR-4270 inhibitor and its mimic on the expression of stem cell markers in gastric cancer (GC) stem-like cells. Methods: GC stem-like cells were isolated from the MKN-45 cell line by a non-adherent surface system. The cells were confirmed by differentiation assays using dexamethasone and insulin as adipogenesis-inducing agents and also Staurosporine as a neural-inducing agent. Isolated GC stem-like cells were treated with different concentrations (0, 15, 20, 25, 30, 40, 50, and 60 nM) of hsa-miR-4270 inhibitor and its mimic. The quantity of cell viability was determined by trypan blue method. Transcription of the stem cell marker genes, including CD44, OCT3/4, SOX2, Nanog, and KLF4, was evaluated by real-time RT-PCR. Results: The results showed that GC stem-like cells were differentiated into both adipose cells using dexamethasone and insulin and neural cells by Staurosporine. Treatment of GC stem-like cells with hsa-miR-4270 inhibitor decreased cell viability and downregulated OCT3/4, CD44, and Nanog to 86%, 79%, and 91% respectively. Also, SOX2 and KLF4 were overexpressed to 8.1- and 1.94-folds, respectively. However, hsa-miR-4270 mimic had opposite effects on the cell viability and gene expression of the stem cell markers. Conclusion: The effect of hsa-miR-4270 inhibitor and its mimic on the expression of the stem cell markers in GCSCs indicated that hsa-miR-4270 stimulates the stemness property of GCSCs, likely through stimulating the development of gastric stem cells.


Assuntos
Insulinas , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Estaurosporina/farmacologia , Estaurosporina/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Dexametasona/farmacologia , Dexametasona/metabolismo , Insulinas/genética , Insulinas/metabolismo , Insulinas/farmacologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
6.
Int J Mol Cell Med ; 12(4): 361-371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-39006197

RESUMO

One of the major challenges in gastric cancer (GC) chemotherapy is the phenomenon of multi-drug resistance (MDR). The epithelial-mesenchymal transition (EMT) and its key molecules, transforming growth factor-ß (TGFß) and SMAD2, play a central role in MDR occurrence. Tamoxifen (TAM), a triphenylethylene derivative, can overcome MDR in human gastric cancers. The aim of this study was to investigate the effect of TAM on 5-FU resistance of GC by suppressing the TGFß1/SMAD2 signaling pathway and EMT. The MKN-45 cell line was subjected to treatment with 5-FU, TAM and a combination of both. The MTT assay was used to investigate the cytotoxic effects of 5-FU and TAM, and the DNA laddering technique was used to assess DNA fragmentation and apoptosis. Real-time RT-PCR examined the change in gene expression in EMT-related genes (SNAI2, VIM, TGFß1 and SMAD2). The results of the present study indicated that not only TAM treatment significantly decreased the IC50 of 5-FU (P≤0.05), but also the addition of TAM to 5-FU induced apoptosis in the MKN-45 cell line. Treatment with TAM and 5-FU significantly inhibited TGFß1 and TGFß1-induced expression of EMT markers (VIM and SNAI2) in MKN-45 cells (P≤0.05). The reduction of TGFß1 targets downstream of the SMAD2 signaling pathway reversed the process of EMT and significantly increased the sensitivity of MKN-45 cells to 5-FU. The results of the present study suggested that reversal of EMT-mediated MDR via the TGFß1/SMAD signaling pathway using TAM may be a potential new therapeutic strategy to overcome chemoresistance to 5-FU during GC chemotherapy.

7.
Mol Biol Rep ; 49(7): 7039-7056, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35717474

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are non-coding, endogenous, single-stranded, small (21-25 nucleotides) RNAs. Various target genes at the post-transcriptional stage are modulated by miRNAs that are involved in the regulation of a variety of biological processes such as embryonic development, differentiation, proliferation, apoptosis, inflammation, and metabolic homeostasis. Abnormal miRNA expression is strongly associated with the pathogenesis of multiple common human diseases including cardiovascular diseases, cancer, hepatitis, and metabolic diseases. METHODS AND RESULTS: Various signaling pathways including transforming growth factor-ß, apoptosis, and Wnt signaling pathways have also been characterized to play an essential role in kidney diseases. Most importantly, miRNA-targeted pharmaceutical manipulation has represented a promising new therapeutic approach against kidney diseases. Furthermore, miRNAs such as miR-30e-5p, miR-98-5p, miR-30d-5p, miR-30a-5p, miR-194-5p, and miR-192-5p may be potentially employed as biomarkers for various human kidney diseases. CONCLUSIONS: A significant correlation has also been found between some miRNAs and the clinical markers of renal function like baseline estimated glomerular filtration rate (eGFR). Classification of miRNAs in different genetic renal disorders may promote discoveries in developing innovative therapeutic interventions and treatment tools. Herein, the recent advances in miRNAs associated with renal pathogenesis, emphasizing genetic kidney diseases and development, have been summarized.


Assuntos
Nefropatias , MicroRNAs , Biomarcadores , Perfilação da Expressão Gênica , Taxa de Filtração Glomerular , Humanos , Rim/metabolismo , Nefropatias/genética , MicroRNAs/genética , MicroRNAs/metabolismo
8.
Curr Mol Med ; 22(6): 514-523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34397330

RESUMO

Hepatitis B virus [HBV], the best-described hepadnavirus, is distributed all around the world and may lead to chronic and acute liver disease, cirrhosis, and hepatocellular carcinoma. Despite the advancement in treatment against HBV, an errorprone reverse transcriptase, which is required for HBV replication as well as host immune pressure, leads to constant evolution and emergence of genotypes, subgenotypes and mutant viruses; so, HBV will remain as a major healthcare problem around the world. This review article mainly focuses on the HBV mutations which correlated to occult HBV infection, immune escape, vaccine failure and eventually liver cirrhosis and HCC. The current study indicated that preS/S region mutations are related to vaccine failure, immune escape, occult HBV infection and the occurrence of HCC. Whereas P region Mutations may lead to drug resistance to NA antivirals. PreC/C region mutations are associated with HBeAg negativity, immune escape, and persistent hepatitis. Moreover, X region Mutations play an important role in HCC development.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Vacinas , Carcinoma Hepatocelular/genética , Genótipo , Hepatite B/complicações , Hepatite B/epidemiologia , Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Humanos , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Mutação
9.
J Cancer Res Ther ; 17(2): 504-509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34121699

RESUMO

BACKGROUND: Autophagy has an essential role in cellular energetic balance, cell cycle, and cell death, so the change in autophagy level is crucial in many human diseases such as cancer. Herbal medicine has been widely used to treat cancer. Bowman-Birk protease inhibitor (BBI), a protease inhibitor extracted from soybean, has antitumorigenic, anti-inflammatory, and anti-angiogenic activities. In this study, we evaluated the effect of BBI on the growth of breast cancer cell line and transcript level of autophagy and apoptosis-related genes. MATERIALS AND METHODS: BBI was purified from soybean by ion-exchange chromatography method. The viability of MDA-MB-231 cells that were treated with BBI was measured by MTT assay, and the transcript level of genes involved in autophagy and apoptosis was measured by real-time-polymerase chain reaction (PCR) technique. RESULTS: The results of BBI purification showed that 100 g of the ethanolic fraction yielded 300-mg BBI with more than 95% purity. MTT results revealed that BBI inhibited the cell growth of MDA-MB-231 cell line in a dose-dependent manner, with an IC50 of 200 µg/mL. The results of real-time reverse transcription-PCR exhibited that BBI altered the expression of Atg5, Beclin1, light chain 3-II, and sequestosome1 and increased the Bax/Bcl2 ratio in MDA-MB-231 cell line. CONCLUSION: According to our results, BBI could inhibit autophagy and induce apoptosis in MDA-MB-231 cell line. Thus, BBI may be used as a therapeutic drug in the treatment of breast cancer whether alone or with chemotherapeutic drugs.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Inibidor da Tripsina de Soja de Bowman-Birk/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Inibidor da Tripsina de Soja de Bowman-Birk/isolamento & purificação , Inibidor da Tripsina de Soja de Bowman-Birk/uso terapêutico
10.
Biochem Genet ; 59(5): 1203-1224, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33725258

RESUMO

Numerous researches have extensively studied factors such as microRNAs that lead to cancer. Thus, the current study's purpose is to investigate the biological consequences of hsa-miR-451b inhibition on the properties and functions of gastric cancer stem-like cells. First, gastric cancer stem-like cells were transfected by hsa-miR-451b inhibitor then we used real-time RT-PCR to evaluate its effect on the expression of hsa-miR-451b and two of its direct target genes, Stemness markers such as KLF4, SOX2, CD44, OCT3/4 and NANOG genes and finally Akt, PI3K, Bcl-2, Bax, CASP3 and PCNA genes involved in apoptosis. Here, we conducted a DNA Laddering assay to investigate apoptosis. The level of the MMP-2 and -9 Activities and Migration were examined by Zymography and Transwell invasion assay. HUVEC cells were used to investigate angiogenesis. The outcomes revealed that the level of the MMP-2 and -9 Activities, migration and angiogenesis decreased, but apoptosis was induced by inhibiting hsa-miR-451b. Evaluating KREMEN1 and CASK expression showed that the former increased, and the latter dropped under hsa-miR-451b inhibition. Also, upregulation of the KLF4 and SOX2 and downregulation of the CD44, OCT3/4, and NANOG decreased Self-renewal ability of gastric cancer stem cells under hsa-miR-451b inhibition. Even, under hsa-miR-451b inhibition, downregulation of Akt, PI3K, Bcl-2 and PCNA as well as upregulation of Bax and CASP3 revealed a movement towards apoptosis in MKN-45 stem-like cells. In summary, hsa-miR-451b is an oncomir in the carcinogenesis of gastric cancer stem-like cells and may be suggested as an appropriate therapeutic target for future gastric cancer treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Neoplasias Gástricas/patologia , Apoptose , Biomarcadores Tumorais/genética , Caspase 3/genética , Caspase 3/metabolismo , Proliferação de Células , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Fator 4 Semelhante a Kruppel , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/antagonistas & inibidores , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas
11.
J Gastrointest Cancer ; 52(3): 922-927, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32901446

RESUMO

PURPOSE: Gastric cancer is one of the most prevalent cancers worldwide and the second most common cause for cancer associated mortality. Anti-tumor effects of tamoxifen in breast cancer are well-established. However, no study has so far investigated the effects of tamoxifen on gene expression of Notch1 and DLL1 in gastric cancer cell line. The present study was conducted to explore the effects of tamoxifen, as a repurposed drug, on gene expression of Notch1 and DLL1 in MKN-45, a gastric cancer cell line. METHODS: MKN-45 cells were cultured in DMEM/F12 medium containing 10% FBS. Cytotoxic effects of tamoxifen on these cells at various concentrations were evaluated by trypan blue exclusion assay. For gene expression analysis, the cells were first incubated with 100 µM tamoxifen followed by total RNA extraction from treated and control cells. Then, cDNA was synthesized. Quantitative real-time PCR using specific primers for Notch1 and DLL1 was performed to assess the effect of tamoxifen on the transcript of them. RESULTS: Treatment with tamoxifen decreased viability of MKN-45 cells in a dose-dependent manner. CC50 was estimated to be around 200 µM. Also, tamoxifen at the dose of 100 µM could significantly downregulate mRNA levels of both Notch1 and DLL1 genes as compared with untreated cells by 24% and 92%, respectively. CONCLUSION: Based on these results, tamoxifen interferes with Notch signaling pathway through downregulating the expression of Notch1 and DLL1 genes and this could be regarded as a mechanism for its anti-cancer effects in this malignant disease.


Assuntos
Antineoplásicos Hormonais/farmacologia , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Proteínas de Membrana/efeitos dos fármacos , Receptor Notch1/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Tamoxifeno/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Humanos , Neoplasias Gástricas/genética
12.
J Neurochem ; 157(3): 727-751, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264426

RESUMO

Parkinson disease (PD) is the second most common neurodegenerative disorder, whose prevalence is 2~3% in the population over 65. α-Synuclein aggregation is the major pathological hallmark of PD. However, recent studies have demonstrated enhancing evidence of tau pathology in PD. Despite extensive considerations, thus far, the actual spreading mechanism of neurodegeneration has remained elusive in a PD brain. This study aimed to further investigate the development of α-synuclein and tau pathology. We employed various PD models, including cultured neurons treated with either 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or with recombinant α-synuclein. Also, we studied dopaminergic neurons of cytokine Interferon-ß knock-out. Moreover, we examined rats treated with 6-hydroxydopamine, Rhesus monkeys administrated with MPTP neurotoxin, and finally, human post-mortem brains. We found the α-synuclein phosphorylation triggers tau pathogenicity. Also, we observed more widespread phosphorylated tau than α-synuclein with prion-like nature in various brain areas. We optionally removed P-tau or P-α-synuclein from cytokine interferon-ß knock out with respective monoclonal antibodies. We found that tau immunotherapy suppressed neurodegeneration more than α-synuclein elimination. Our findings indicate that the pathogenic tau could be one of the leading causes of comprehensive neurodegeneration triggered by PD. Thus, we can propose an efficient therapeutic target to fight the devastating disorder.


Assuntos
Encéfalo/patologia , Doença de Parkinson/patologia , Tauopatias/patologia , alfa-Sinucleína/genética , Animais , Autopsia , Comportamento Animal , Sobrevivência Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Humanos , Interferon beta/genética , Intoxicação por MPTP/patologia , Macaca mulatta , Masculino , Camundongos , Camundongos Knockout , Doença de Parkinson/psicologia , Gravidez , Ratos , Ratos Wistar , Proteínas Recombinantes , Proteínas tau/biossíntese , Proteínas tau/genética
13.
J Cancer Res Ther ; 16(Supplement): S90-S94, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33380659

RESUMO

AIM OF STUDY: Since the effect of placental growth factor (PlGF) on MicroRNAs (miRNAs) at molecular level was remained unknown, the aim was to predict the transcription factors (TFs) and their regulated miRNAs that activated by PlGF and analysis the function, biological processes, and cancer stem cells (CSCs)-related signaling pathways of miRNAs that regulated in PlGF signaling pathway. SUBJECTS AND METHODS: The aim of this study is to find the TFs that activated by PlGF, we used three online software programs PCViz, PubAngioGen, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Then, the regulatory miRNAs downstream of the TFs were identified by four software TMHD, chipbase, circuits, and transmir databases. Target genes of miRNAs were predicted by three online software program TargetScan, Pictar, and miRanda algorithms. Moreover, Mirwalk database was used to find the validated miRNAs in angiogenesis process. Furthermore, Gene ontology (GO) biological process, GO molecular function, KEGG pathway, BIOCARTA pathway, Panther pathway, and Reactome pathway in Database for Annotation and Visualization and Integrated Discovery tools were used to find the functions and signaling pathways of target genes. RESULTS: Many target genes of miRNAs in PlGF pathway were involved in CSCs-related signaling pathways such as Hedgehog, Wnt/b-catenin, Notch, mTOR, epidermal growth factor EGF, and transforming growth factor-beta signaling pathways. Regulatory miRNAs in PlGF signaling pathway probably promote cell proliferation, migration, tubulogenesis, and metastasize in CSCs. CONCLUSIONS: Bioinformatic analysis revealed that regulatory miRNAs and their target genes in PlGF pathway played important roles in the progression of CSCs-related signaling pathways.


Assuntos
MicroRNAs/genética , Neoplasias/genética , Fator de Crescimento Placentário/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Biologia Computacional , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo
14.
Cell Biochem Funct ; 38(6): 686-694, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32232872

RESUMO

The Wnt pathway is the most important cascade in the nervous system; evidence has indicated that deregulation of the Wnt pathway induced pathogenic hallmarks of neurodegenerative diseases. Glycogen synthase kinase-3ß (GSK-3ß) as the main member of the Wnt pathway increases tau inclusions, the main marker in the neurodegenerative diseases. Phosphorylated tau is observed in the pre-tangle of the neurons in the early stage of neurodegenerative diseases. The researchers always try to improve pharmacological approaches of new therapeutic strategies to the treatment of neurodegenerative diseases that are required to represent a significant entry point by understanding the theoretical interactions of the molecular pathways. In this review, we have discussed the recent knowledge about the canonical and non-canonical Wnt signalling pathway, GSK-3ß, Wnt/ß-catenin antagonists, tau phosphorylation, and their important roles in the neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas/metabolismo , Via de Sinalização Wnt , Proteínas tau/metabolismo , Animais , Encéfalo/fisiologia , Células Cultivadas , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Ligantes , Neurônios/metabolismo , Fosforilação
15.
J Cell Biochem ; 120(7): 11150-11157, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30860639

RESUMO

Alzheimer, a current neurodegenerative disorder has adverse effects on memory and behavior. ß-Amyloid peptide accumulations are the hallmarks of Alzheimer. Dysfunction of autophagy and apoptosis is detected in Alzheimer's disease. The effect of Bowman-Birk inhibitor (BBI), purified from soybean, was investigated in autophagy and apoptosis in Alzheimer treatment. Treated-PC12 cells with 1000 nM HgCl2 induced amyloid ß (Aß) accumulation. Treatment of PC12 cells with 1000 nM HgCl 2 and then 500 µg/mL BBI could decrease the expression ratio of Bax/Bcl2 and increase the expression of beclin1, Bnip3, Atg5, and autophagy-related genes. These results indicated that BBI could inhibit Aß accumulation by inducing autophagy, and also the neuroprotective effect was detected through decreasing apoptosis in the in vitro model of Alzheimer's disease. These results provided further evidence for the potential effectiveness of BBI in the treatment of Alzheimer's disease.

16.
J Cell Biochem ; 120(3): 3268-3276, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30203564

RESUMO

Despite the fact that much research has focused on gastric cancer, it is still a worldwide concern, because of the difficulties with factors such as signaling pathway crosstalk and gastric cancer stem cell (GCSC). Placental growth factor (PlGF) is one of these factors, and its tumorigenicity potential still remains a question. As a result, we have investigated the effect of PlGF knockdown on apoptosis and genes involved in the Wnt signaling pathway, and apoptosis in cancer stem cells derived from AGS an MKN-45 gastric cancer cell lines. We isolated GCSCs from MKN-45 and AGS cell lines on a nonadherent surface. Then the cell viability, the real-time reverse transcription-polymerase chain reaction data of the genes involved in the Wnt signaling pathway, and apoptosis were evaluated. Furthermore, DNA laddering was used to show the apoptotic effect and DNA fragmentation caused by the PlGF knockdown. Our investigation revealed that the PlGF knockdown with PlGF-specific small interfering RNA at 40 pmol for GCSCs derived from MKN-45 and AGS at 24 hours can significantly affect the cell viability, the Wnt signaling pathway, and the apoptosis-related genes expression. In conclusion, we showed the PlGF knockdown may induce apoptosis via the Wnt signaling pathway in GCSCs.


Assuntos
Apoptose/fisiologia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fator de Crescimento Placentário/metabolismo , Neoplasias Gástricas/metabolismo , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Humanos , Fator de Crescimento Placentário/genética , RNA Interferente Pequeno/genética , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
17.
Environ Toxicol Pharmacol ; 60: 216-224, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29763882

RESUMO

Thymoquinone (TQ) is an active ingredient of some medicinal herbs. Despite extensive studies on the biological and pharmacological properties of TQ, its effect on the characteristics of stem cells remains to be clarified. Therefore, this study was aimed to investigate the effect of TQ on viability, proliferation and immunomodulatory potential of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) in vitro. The BM-MSCs were isolated from young NMRI mice. The cytotoxic effect of TQ on the BM-MSCs was evaluated using MTT assay. Then, the effect of TQ on the proliferation of BM-MSCs and the mRNA expression of genes involved in self-renewal and immunomodulatory potential of MSCs was assessed by the cell counting and real-time PCR assays. Results showed that TQ reduces the number of BM-MSCs in a dose- and time-dependent manner. In addition, the half-maximal inhibitory concentration values of TQ on the BM-MSCs were 8 µg/ml at 24h and 4 µg/ml at 48 and 72h after treatment. Furthermore, about 90% of the BM-MSCs were alive after treatment with concentrations ≤2 µg/ml of TQ for 24h. The results of cell counting assay indicated that TQ at concentrations of 1-2 µg/ml significantly enhanced the proliferation of BM-MSCs (P < 0.05). The gene expression analysis also showed that Tlr3, Tlr4, Ccl2, Ccl3, Sox2, and Rex1 are overexpressed (Fold change ≥1.5) in the TQ-treated BM-MSCs compared with the untreated samples. In conclusion, these findings propose that TQ may regulate self-renewal and immunomodulatory potential of MSCs. However, the exact mechanisms and the roles of this regulation are required to be elucidated in further study.


Assuntos
Benzoquinonas/toxicidade , Células da Medula Óssea/citologia , Perfilação da Expressão Gênica/métodos , Imunomodulação/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos
18.
Cell Biol Int ; 42(8): 949-958, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29512256

RESUMO

Nowadays, most studies focused on cancer stem cells (CSCs) through their abilities to cause tumorigenicity, drug resistance, and cancer recurrence. On the other side, nonsteroidal anti-inflammatory drugs (NSAIDs) have been taken into consideration because of cheapness and availability. For the reasons mentioned above, we have studied the effect of ibuprofen as an NSAID on CSCs derived from AGS and MKN-45 gastric cancer cell lines to perform effective cancer therapy. We evaluated cell viability, spheroid body formation, monolayer, and soft agar colony formation to express the anti-cancer effect of ibuprofen on CSCs. Also, real-time RT-PCR data of stemness markers and genes affected on, or downstream of Wnt signaling pathway were evaluated. Our findings suggest that ibuprofen at 1,000 µM for 48 h can reduce cell proliferation, stemness features in CSCs by changing the expression level of CD44, OCT3/4, SOX2, Nanog, and KLF4 as stemness markers. Furthermore, ibuprofen can have an inhibitory role in Wnt signaling pathway by changing the expression level of some genes, including CTNNB1, CTNNBIP1, SMARCD1, PYGO2, SUFU, CASK, and KREMEN1. According to our study, ibuprofen has an anti-proliferative effect on CSCs derived from AGS and MKN-45 cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ibuprofeno/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 4 Semelhante a Kruppel , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Mapas de Interação de Proteínas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
19.
J Cancer Res Ther ; 13(3): 477-483, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28862212

RESUMO

CONTEXT: Since mechanisms of microRNAs (miRNAs) in gastric cancer stem cells (CSCs) and their signaling pathways remain unknown, our aim was to predict the miRNA target genes that differentially expressed in gastric CSCs. SUBJECTS AND METHODS: Using miRanda, PicTar, and TargetScan algorithm, target genes of miRNAs differentially expressed in gastric CSCs versus parental cells were predicted. Afterward, signaling pathways and biological functions of miRNAs in gastric CSCs were analyzed by the Database for Annotation, Visualization and Integrated Discovery (DAVID) database and DIANA tools. RESULTS: Gene ontology (GO) tool indicated that most of miRNA target genes involved in regulation of cell cycle, apoptosis, cell migration, vasculogenesis, angiogenesis, etc. Some of miRNA target genes are connected to pivotal signaling pathways of the "stem cell genes," such as Notch, Wnt/ß-catenin. CONCLUSIONS: Bioinformatics analysis such as DAVID database, GO biological process, GO molecular function, Kyoto encyclopedia of genes and genomes pathways, BioCarta pathway, Panther pathway, and Reactome pathway revealed that target genes of differentially expressed miRNAs in gastric CSCs were connected to pivotal biological pathways that involved in cell cycle regulation, stemness properties, and differentiation.


Assuntos
Biologia Computacional , Regulação Neoplásica da Expressão Gênica/genética , Células-Tronco Neoplásicas/patologia , Neoplasias Gástricas/genética , Apoptose/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Bases de Dados Genéticas , Redes Reguladoras de Genes/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Gástricas/patologia
20.
Avicenna J Phytomed ; 7(2): 145-156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28348970

RESUMO

OBJECTIVE: Acorus calamus (A. calamus) has been used as a medicinal plant in Asia for its effects on digestive system for the last 2000 years. To investigate the anti-cancer activity of rhizome of A. calamus, the ethanolic and methanolic extracts and essential oil of the rhizome were prepared and their effects were assessed on human gastric cancer cell line (AGS). MATERIALS AND METHODS: The viability of cells which were treated with the extracts and the essential oil was assessed by MTT assay. To evaluate the anti-angiogenic property of the extracts, in vitro tube formation assay was done. Cell cycle distribution and the expression of Oct4 and Nucleostemin, after treatments, were checked by flowcytometry and quantitative RT-PCR, respectively. Furthermore, analysis of essential oil from A.calamus was done by GC-MS. RESULTS: Our results showed that the growth of AGS cells was inhibited by the extracts and essential oil and the extracts inhibited the angiogenesis in HUVEC cells. Our data revealed that the extracts and essential oil of A. calamus caused G1 arrest in AGS cells and downregulation of Oct4 and NS after treatment. By GC-MS analysis, we found new compounds such as epiprezizaene, valencene and isocyclocitral in essential oil of A. CONCLUSION: All together, our results showed that the extracts of A. calamus have anti-proliferative and anti-angiogenic effects on cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA