Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 594(7863): 403-407, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040259

RESUMO

Adaptive behaviour necessitates the formation of memories for fearful events, but also that these memories can be extinguished. Effective extinction prevents excessive and persistent reactions to perceived threat, as can occur in anxiety and 'trauma- and stressor-related' disorders1. However, although there is evidence that fear learning and extinction are mediated by distinct neural circuits, the nature of the interaction between these circuits remains poorly understood2-6. Here, through a combination of in vivo calcium imaging, functional manipulations, and slice physiology, we show that distinct inhibitory clusters of intercalated neurons (ITCs) in the mouse amygdala exert diametrically opposed roles during the acquisition and retrieval of fear extinction memory. Furthermore, we find that the ITC clusters antagonize one another through mutual synaptic inhibition and differentially access functionally distinct cortical- and midbrain-projecting amygdala output pathways. Our findings show that the balance of activity between ITC clusters represents a unique regulatory motif that orchestrates a distributed neural circuitry, which in turn regulates the switch between high- and low-fear states. These findings suggest that the ITCs have a broader role in a range of amygdala functions and associated brain states that underpins the capacity to adapt to salient environmental demands.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Estimulação Acústica , Animais , Aprendizagem da Esquiva , Condicionamento Clássico , Extinção Psicológica , Feminino , Masculino , Camundongos , Inibição Neural , Neurônios/fisiologia
2.
Elife ; 102021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34028352

RESUMO

Dopaminergic signaling plays an important role in associative learning, including fear and extinction learning. Dopaminergic midbrain neurons encode prediction error-like signals when threats differ from expectations. Within the amygdala, GABAergic intercalated cell (ITC) clusters receive one of the densest dopaminergic projections, but their physiological consequences are incompletely understood. ITCs are important for fear extinction, a function thought to be supported by activation of ventromedial ITCs that inhibit central amygdala fear output. In mice, we reveal two distinct novel mechanisms by which mesencephalic dopaminergic afferents control ITCs. Firstly, they co-release GABA to mediate rapid, direct inhibition. Secondly, dopamine suppresses inhibitory interactions between distinct ITC clusters via presynaptic D1 receptors. Early extinction training augments both GABA co-release onto dorsomedial ITCs and dopamine-mediated suppression of dorso- to ventromedial inhibition between ITC clusters. These findings provide novel insights into dopaminergic mechanisms shaping the activity balance between distinct ITC clusters that could support their opposing roles in fear behavior.


Assuntos
Tonsila do Cerebelo/fisiologia , Comportamento Animal , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Extinção Psicológica , Medo , Interneurônios/fisiologia , Mesencéfalo/fisiologia , Potenciais de Ação , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Interneurônios/metabolismo , Masculino , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural , Vias Neurais/fisiologia , Receptores de Dopamina D1/metabolismo , Fatores Sexuais , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
3.
Methods Mol Biol ; 2173: 1-20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32651907

RESUMO

Optogenetics has become a key method to interrogate the function of neural populations and circuits in the brain. This technique combines the targeted expression of light-activated proteins with subsequent manipulation of neural activity by light. Opsins such as Channelrhodopsin-2 (ChR2), which is a light-gated cation-channel, can be fused to or coexpressed with fluorescent proteins to allow for visualization and concurrent activation of neurons and their axonal projections. Via stereotaxic delivery of viral vectors, ChR2 can be constitutively or conditionally expressed in specific neurons in defined brain regions. Subsequently, identified axonal projections can be studied functionally ex vivo in combination with patch-clamp recordings in brain slices. This optogenetic mapping of neural circuitry has enabled the identification and characterization of novel synaptic connections and the detailed investigation of known anatomical connections previously not amenable with electrical stimulation techniques. Here, we describe a protocol for investigating functional properties of local and long-range connectivity in the brain using blue-light activated ChR2 variants and whole-cell patch-clamp recordings in acute brain slices.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Optogenética/métodos , Animais , Encéfalo/metabolismo , Channelrhodopsins/metabolismo , Eletrofisiologia , Camundongos , Neurônios/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
4.
EMBO J ; 36(12): 1770-1787, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28487411

RESUMO

Synaptic downscaling is a homeostatic mechanism that allows neurons to reduce firing rates during chronically elevated network activity. Although synaptic downscaling is important in neural circuit development and epilepsy, the underlying mechanisms are poorly described. We performed small RNA profiling in picrotoxin (PTX)-treated hippocampal neurons, a model of synaptic downscaling. Thereby, we identified eight microRNAs (miRNAs) that were increased in response to PTX, including miR-129-5p, whose inhibition blocked synaptic downscaling in vitro and reduced epileptic seizure severity in vivo Using transcriptome, proteome, and bioinformatic analysis, we identified the calcium pump Atp2b4 and doublecortin (Dcx) as miR-129-5p targets. Restoring Atp2b4 and Dcx expression was sufficient to prevent synaptic downscaling in PTX-treated neurons. Furthermore, we characterized a functional crosstalk between miR-129-5p and the RNA-binding protein (RBP) Rbfox1. In the absence of PTX, Rbfox1 promoted the expression of Atp2b4 and Dcx. Upon PTX treatment, Rbfox1 expression was downregulated by miR-129-5p, thereby allowing the repression of Atp2b4 and Dcx. We therefore identified a novel activity-dependent miRNA/RBP crosstalk during synaptic scaling, with potential implications for neural network homeostasis and epileptogenesis.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/metabolismo , Fatores de Processamento de RNA/metabolismo , Sinapses/fisiologia , Animais , Biologia Computacional , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Perfilação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Picrotoxina/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Proteoma/análise
5.
EMBO J ; 34(17): 2237-54, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26105073

RESUMO

MicroRNAs (miRNAs) are important regulators of neuronal development, network connectivity, and synaptic plasticity. While many neuronal miRNAs were previously shown to modulate neuronal morphogenesis, little is known regarding the regulation of miRNA function. In a large-scale functional screen, we identified two novel regulators of neuronal miRNA function, Nova1 and Ncoa3. Both proteins are expressed in the nucleus and the cytoplasm of developing hippocampal neurons. We found that Nova1 and Ncoa3 stimulate miRNA function by different mechanisms that converge on Argonaute (Ago) proteins, core components of the miRNA-induced silencing complex (miRISC). While Nova1 physically interacts with Ago proteins, Ncoa3 selectively promotes the expression of Ago2 at the transcriptional level. We further show that Ncoa3 regulates dendritic complexity and dendritic spine maturation of hippocampal neurons in a miRNA-dependent fashion. Importantly, both the loss of miRNA activity and increased dendrite complexity upon Ncoa3 knockdown were rescued by Ago2 overexpression. Together, we uncovered two novel factors that control neuronal miRISC function at the level of Ago proteins, with possible implications for the regulation of synapse development and plasticity.


Assuntos
Proteínas Argonautas/biossíntese , Regulação da Expressão Gênica/fisiologia , MicroRNAs/biossíntese , Neurônios/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas Argonautas/genética , Células HEK293 , Humanos , MicroRNAs/genética , Antígeno Neuro-Oncológico Ventral , Neurônios/citologia , Coativador 3 de Receptor Nuclear/genética , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley
6.
Nat Neurosci ; 18(5): 666-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25867122

RESUMO

The E3 ubiquitin ligase Ube3a is an important regulator of activity-dependent synapse development and plasticity. Ube3a mutations cause Angelman syndrome and have been associated with autism spectrum disorders (ASD). However, the biological significance of alternative Ube3a transcripts generated in mammalian neurons remains unknown. We report here that Ube3a1 RNA, a transcript that encodes a truncated Ube3a protein lacking catalytic activity, prevents exuberant dendrite growth and promotes spine maturation in rat hippocampal neurons. Surprisingly, Ube3a1 RNA function was independent of its coding sequence but instead required a unique 3' untranslated region and an intact microRNA pathway. Ube3a1 RNA knockdown increased activity of the plasticity-regulating miR-134, suggesting that Ube3a1 RNA acts as a dendritic competing endogenous RNA. Accordingly, the dendrite-growth-promoting effect of Ube3a1 RNA knockdown in vivo is abolished in mice lacking miR-134. Taken together, our results define a noncoding function of an alternative Ube3a transcript in dendritic protein synthesis, with potential implications for Angelman syndrome and ASD.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Neurogênese/genética , RNA Mensageiro/fisiologia , Ubiquitina-Proteína Ligases/genética , Regiões 3' não Traduzidas/genética , Animais , Dendritos/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/fisiologia , Mutação da Fase de Leitura , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Neurônios/ultraestrutura , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Interferência de RNA , Splicing de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Ratos , Transfecção
7.
Philos Trans R Soc Lond B Biol Sci ; 369(1652)2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25135976

RESUMO

MicroRNAs (miRNAs) are rapidly emerging as central regulators of gene expression in the postnatal mammalian brain. Initial studies mostly focused on the function of specific miRNAs during the development of neuronal connectivity in culture, using classical gain- and loss-of-function approaches. More recently, first examples have documented important roles of miRNAs in plastic processes in intact neural circuits in the rodent brain related to higher cognitive abilities and neuropsychiatric disease. At the same time, evidence is accumulating that miRNA function itself is subjected to sophisticated control mechanisms engaged by the activity of neural circuits. In this review, we attempt to pay tribute to this mutual relationship between miRNAs and synaptic plasticity. In particular, in the first part, we summarize how neuronal activity influences each step in the lifetime of miRNAs, including the regulation of transcription, maturation, gene regulatory function and turnover in mammals. In the second part, we discuss recent examples of miRNA function in synaptic plasticity in rodent models and their implications for higher cognitive function and neurological disorders, with a special emphasis on epilepsy as a disorder of abnormal nerve cell activity.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Epilepsia/fisiopatologia , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , MicroRNAs/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Humanos , Camundongos , MicroRNAs/biossíntese , MicroRNAs/genética , Modelos Neurológicos , Plasticidade Neuronal/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-23986697

RESUMO

In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic) path (pp-CA1 synapse) and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse). Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake animals, but these studies hint that information processing at this synapse might be distinct to processing at the Sc-CA1 synapse. Here, we characterized synaptic properties and synaptic plasticity at the pp-CA1 synapse of freely behaving adult rats. We observed that field excitatory postsynaptic potentials at the pp-CA1 synapse have longer onset latencies and a shorter time-to-peak compared to the Sc-CA1 synapse. LTP (>24 h) was successfully evoked by tetanic afferent stimulation of pp-CA1 synapses. Low frequency stimulation evoked synaptic depression at Sc-CA1 synapses, but did not elicit LTD at pp-CA1 synapses unless the Schaffer collateral afferents to the CA1 region had been severed. Paired-pulse responses also showed significant differences. Our data suggest that synaptic plasticity at the pp-CA1 synapse is distinct from the Sc-CA1 synapse and that this may reflect its specific role in hippocampal information processing.

9.
Mol Cell Biol ; 32(3): 619-32, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22144581

RESUMO

The dynamic expression of AMPA-type glutamate receptors (AMPA-R) at synapses is a key determinant of synaptic plasticity, including neuroadaptations to drugs of abuse. Recently, microRNAs (miRNAs) have emerged as important posttranscriptional regulators of synaptic plasticity, but whether they target glutamate receptors to mediate this effect is not known. Here we used microarray screening to identify miRNAs that regulate synaptic plasticity within the nucleus accumbens, a brain region critical to forming drug-seeking habits. One of the miRNAs that showed a robust enrichment at medium spiny neuron synapses was miR-181a. Using bioinformatics tools, we detected a highly conserved miR-181a binding site within the mRNA encoding the GluA2 subunit of AMPA-Rs. Overexpression and knockdown of miR-181a in primary neurons demonstrated that this miRNA is a negative posttranscriptional regulator of GluA2 expression. Additionally, miR-181a overexpression reduced GluA2 surface expression, spine formation, and miniature excitatory postsynaptic current (mEPSC) frequency in hippocampal neurons, suggesting that miR-181a could regulate synaptic function. Moreover, miR-181a expression was induced by dopamine signaling in primary neurons, as well as by cocaine and amphetamines, in a mouse model of chronic drug treatment. Taken together, our results identify miR-181a as a key regulator of mammalian AMPA-type glutamate receptors, with potential implications for the regulation of drug-induced synaptic plasticity.


Assuntos
Dopamina/metabolismo , Hipocampo/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Receptores de AMPA/biossíntese , Animais , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Metanfetamina/farmacologia , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Receptores de AMPA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA