Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(11): 16233-16249, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34642887

RESUMO

Particulate matter is usually regarded as the dominant pollutant in Tehran megacity in Iran. However, the number of ozone exceedance days significantly increased in recent years. This study analyzes simultaneous measurements of O3 and NOx (NO+NO2) concentrations to improve our understanding of ozone evolution during the summers of 2017 to 2019. The k-means clustering technique was used to select five representative air quality monitoring sites in Tehran to capture O3 and NOx concentrations' variability. The findings show that all of the investigated sites failed to meet the ozone non-attainment criterion. The ozone weekend effect is seen in the study of weekday/weekend differences in 2017 and 2018, but not in 2019, which can be due to the shift in the ozone production regime. The summer mean variation analysis can also be used to deduce this regime change. In 2017, the O3 and NO2 summer mean variations suggest a holdback in the NO2 upward trend and a reversal in the O3 downward trend that had been in place since 2012. Air mass back trajectory clustering reveals that east and north-east air mass clusters have the most significant impact on Tehran's O3 pollution and the highest regional contribution to OX. The study of OX against NOx shows that the regional contribution to OX increased from 2017 to 2018 and then decreased in 2019; however, the local contribution is the opposite. The diurnal analysis of the regional and local contributions to OX indicated that OX in Tehran might be primarily affected by pollutants from a short distance. The findings reveal critical changes in the behavior of O3 in recent years, indicating that decision-makers in Tehran should reconsider air pollution control measures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Análise por Conglomerados , Monitoramento Ambiental , Irã (Geográfico) , Ozônio/análise
2.
Environ Sci Atmos ; 1(5): 228-240, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34355191

RESUMO

The spread of COVID-19 has posed serious challenges for the global communities. To reduce the circulation of the infection, governmental bodies have imposed different lockdown measures at various levels of complexity and duration. As a result, a substantial reduction in mobility might have important, yet unknown, implications for air quality. In this study, we applied the Comprehensive Air quality Model with eXtensions (CAMx) to investigate potential changes in air quality and its chemical composition over northern Italy and Switzerland during periods when lockdown measures were enforced. Our results indicated that lockdown measures reduced nitrogen dioxide (NO2) air concentrations by up to 46% and 25% in the Po Valley and Swiss Plateau regions, respectively, whereas fine particulate matter (PM2.5) air concentrations were reduced only by up to 10% and 6%. This highlights the importance of other emission categories other than traffic for the total PM2.5 levels. The analysis of the PM2.5 components indicated that elemental carbon (EC) and particulate nitrate (NO3 -) were the species most affected by the lockdown measures, whereas a mild increase in the secondary organic aerosol (SOA) concentrations occurred in the Po Valley, and specifically over the metropolitan area of Milan. Our results indicated that an increase in the oxidation capacity of the atmosphere, i.e. in the ˙OH and ˙NO3 radicals, was mainly responsible for the mild increase in SOA concentrations.

3.
Nature ; 587(7834): 414-419, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208962

RESUMO

Particulate matter is a component of ambient air pollution that has been linked to millions of annual premature deaths globally1-3. Assessments of the chronic and acute effects of particulate matter on human health tend to be based on mass concentration, with particle size and composition also thought to play a part4. Oxidative potential has been suggested to be one of the many possible drivers of the acute health effects of particulate matter, but the link remains uncertain5-8. Studies investigating the particulate-matter components that manifest an oxidative activity have yielded conflicting results7. In consequence, there is still much to be learned about the sources of particulate matter that may control the oxidative potential concentration7. Here we use field observations and air-quality modelling to quantify the major primary and secondary sources of particulate matter and of oxidative potential in Europe. We find that secondary inorganic components, crustal material and secondary biogenic organic aerosols control the mass concentration of particulate matter. By contrast, oxidative potential concentration is associated mostly with anthropogenic sources, in particular with fine-mode secondary organic aerosols largely from residential biomass burning and coarse-mode metals from vehicular non-exhaust emissions. Our results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration. If the oxidative potential can be linked to major health impacts, it may be more effective to control specific sources of particulate matter rather than overall particulate mass.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poluição do Ar/análise , Material Particulado/análise , Material Particulado/química , Brônquios/citologia , Células Cultivadas , Cidades , Células Epiteliais , Europa (Continente) , Humanos , Modelos Teóricos , Oxirredução , População Rural , População Urbana
4.
Sci Total Environ ; 741: 140467, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886963

RESUMO

Air pollution is among the top threats to human health and ecosystems despite the substantial decrease in anthropogenic emissions. Meanwhile, the role of ship emissions on air quality is becoming increasingly important with the growing maritime transport and less strict regulations. In this study, we modeled the air quality in Europe between 1990 and 2030 with ten-year intervals, using the regional air quality model CAMx version 6.50, to investigate the changes in the past (1990-2010) as well as the effects of different land and ship emission scenarios in the future (2020,2030). The modeled mean ozone levels decreased slightly during the first decade but then started increasing again especially in polluted areas. Results from the future scenarios suggest that by 2030 the peak ozone would decrease, leading to a decrease in the days exceeding the maximum daily 8-h average ozone (MDA8) limit values (60 ppb) by 51% in southern Europe relative to 1990. The model results show a decrease of 56% (6.3 µg m-3) in PM2.5 concentrations from 1990 to 2030 under current legislation, mostly due to a large drop in sulfate (representing up to 44% of the total PM2.5 decrease during 1990-2000) while nitrate concentrations were predicted to go down with an increasing rate (10% of total PM2.5 decrease during 1990-2000 while 36% during 2020-2030). The ship emissions if reduced according to the maximum technically feasible reduction (MTFR) scenario were predicted to contribute up to 19% of the decrease in the PM2.5 concentrations over land between 2010 and 2030. Ship emission reductions according to the MTFR scenario would lead to a decrease in the days with MDA8 exceeding EU limits by 24-28% (10-14 days) around the coastal regions. The results obtained in our study show the increasing importance of ship emission reductions, after a relatively large decrease in land emissions was achieved in Europe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA