Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 361: 212-235, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517543

RESUMO

The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Neoplasias/patologia , Nanopartículas/química , Permeabilidade , Nanomedicina , Microambiente Tumoral
2.
Int J Cancer ; 153(5): 1051-1066, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260355

RESUMO

Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) expressed in endothelial cells and required for stimulation of cell migration by vascular endothelial growth factor A165 (VEGFA165 ) and pleiotrophin (PTN). It is also over or under-expressed in various tumor types. In this study, we used genetically engineered Ptprz1-/- and Ptprz1+/+ mice to study mechanistic aspects of PTPRZ1 involvement in angiogenesis and investigate its role in lung adenocarcinoma (LUAD) growth. Ptprz1-/- lung microvascular endothelial cells (LMVEC) have increased angiogenic features compared with Ptprz1+/+ LMVEC, in line with the increased lung angiogenesis and the enhanced chemically induced LUAD growth in Ptprz1-/- compared with Ptprz1+/+ mice. In LUAD cells isolated from the lungs of urethane-treated mice, PTPRZ1 TP inhibition also enhanced proliferation and migration. Expression of beta 3 (ß3 ) integrin is decreased in Ptprz1-/- LMVEC, linked to enhanced VEGF receptor 2 (VEGFR2), c-Met tyrosine kinase (TK) and Akt kinase activities. However, only c-Met and Akt seem responsible for the enhanced endothelial cell activation in vitro and LUAD growth and angiogenesis in vivo in Ptprz1-/- mice. A selective PTPRZ1 TP inhibitor, VEGFA165 and PTN also activate c-Met and Akt in a PTPRZ1-dependent manner in endothelial cells, and their stimulatory effects are abolished by the c-Met TK inhibitor (TKI) crizotinib. Altogether, our data suggest that low PTPRZ1 expression is linked to worse LUAD prognosis and response to c-Met TKIs and uncover for the first time the role of PTPRZ1 in mediating c-Met activation by VEGFA and PTN.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Animais , Camundongos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Células Endoteliais/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tirosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo
3.
J Pharmacol Exp Ther ; 385(1): 35-49, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746610

RESUMO

Existing vascular endothelial growth factor-oriented antiangiogenic approaches are known for their high potency. However, significant side effects associated with their use drive the need for novel antiangiogenic strategies. The small GTPase RhoA is an established regulator of actin cytoskeletal dynamics. Previous studies have highlighted the impact of endothelial RhoA pathway on angiogenesis. Rho-associate kinase (ROCK), a direct RhoA effector, is potently inhibited by Fasudil, a clinically relevant ROCK inhibitor. Here, we aimed to target the RhoA signaling in endothelial cells by generating Fasudil-encapsulated CD31-targeting liposomes as a potential antiangiogenic therapy. The liposomes presented desirable characteristics, preferential binding to CD31-expressing HEK293T cells and to endothelial cells, inhibited stress fiber formation and cytoskeletal-related morphometric parameters, and inhibited in vitro angiogenic functions. Overall, this work shows that the nanodelivery-mediated endothelial targeting of RhoA signaling can offer a promising strategy for angiogenesis inhibition in vascular-related diseases. SIGNIFICANCE STATEMENT: Systemic administration of antiangiogenic therapeutics induces side effects to non-targeted tissues. This study, among others, has shown the impact of the RhoA signaling in the endothelial cells and their angiogenic functions. Here, to minimize potential toxicity, this study generated CD31-targeting liposomes with encapsulated Fasudil, a clinically relevant Rho kinase inhibitor, and successfully targeted endothelial cells. In this proof-of-principle study, the efficient Fasudil delivery, its impact on the endothelial signaling, morphometric alterations, and angiogenic functions verify the benefits of site-targeted antiangiogenic therapy.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais/metabolismo , Células HEK293 , Lipossomos , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Methods Mol Biol ; 2193: 1-11, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32808253

RESUMO

Cutaneous wound healing is an intricate and multifaceted process. Despite these complexities, the distinct phases of wound healing provide a unique opportunity to evaluate the roles of different targets in these coordinated responses. This protocol details an in vivo wound healing assay to study the intersection of cellular, molecular, and systemic effector pathways. The role of certain proteins in the wound healing process can be efficiently explored in vivo through the generation of tissue-specific deficient mice. This approach, although optimized for use with animal models displaying epithelial deficiencies, can be used for other tissue-specific deficiencies, and utilizes simple and cost-effective methods, allowing investigators to precisely devise their experimental design. The coordination of immunological, epithelial, vascular, and microenvironmental factors in wound healing makes this technique a valuable tool for investigators across fields.


Assuntos
Bioensaio/métodos , Microambiente Celular/fisiologia , Pele/crescimento & desenvolvimento , Cicatrização/fisiologia , Animais , Modelos Animais de Doenças , Epiderme/crescimento & desenvolvimento , Camundongos
5.
Methods Mol Biol ; 2193: 85-96, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32808261

RESUMO

Lymphangiogenesis, the formation of lymphatic vessels from preexisting ones, is an important process in wound-healing physiology. Deregulation of lymphangiogenesis and lymphatic vascular remodeling have been implicated in a range of inflammatory conditions, such as lymphedema, lymphadenopathy, tumor growth, and cancer metastasis. Any attempt in understanding various parameters of the lymphangiogenic process and developing desirable therapeutic targets requires recapitulating these conditions in in vivo models. One pitfall with some experimental models is the absence of immune response, an important regulatory factor for lymphangiogenesis. We overcome this issue by using immune competent mice. In this chapter, by using Angiopoietin-2 (Ang2), a protein that belongs to the Ang/Tie signaling pathway, we describe the ear sponge assay with important adaptations, highlighting a reproducible and quantitative tool for assessment of in vivo lymphangiogenesis.


Assuntos
Bioensaio/métodos , Orelha/fisiopatologia , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia , Angiopoietina-2/genética , Animais , Orelha/cirurgia , Humanos , Imunidade/imunologia , Imunidade/fisiologia , Linfangiogênese/genética , Linfangiogênese/imunologia , Vasos Linfáticos/imunologia , Camundongos , Transdução de Sinais/genética , Remodelação Vascular/genética , Remodelação Vascular/imunologia , Remodelação Vascular/fisiologia , Cicatrização/genética , Cicatrização/fisiologia
6.
Methods Mol Biol ; 2193: 97-109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32808262

RESUMO

The small GTPase RhoA participates in actin and microtubule machinery, cell migration and invasion, gene expression, vesicular trafficking and cell cycle, and its dysregulation is a determining factor in many pathological conditions. Similar to other Rho GTPases, RhoA is a key component of the wound-healing process, regulating the activity of different participating cell types. RhoA gets activated upon binding to guanine nucleotide exchange factors (GEFs), which catalyze the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP). GTPase-activating proteins (GAPs) mediate the exchange of GTP to GDP, inactivating RhoA, whereas guanine nucleotide dissociation inhibitors (GDIs) preserve the inactive pool of RhoA proteins in the cytosol. RhoA and Rho GEF activation is detected by protein pull-down assays, which use chimeric proteins with Rhotekin and G17A mutant RhoA as "bait" to pull down active RhoA and RhoA GEFs, respectively. In this chapter, we describe an optimized protocol for performing RhoA and GEF pull-down assays.


Assuntos
Proteínas Ativadoras de GTPase/genética , Biologia Molecular/métodos , Proteína rhoA de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/isolamento & purificação , Guanosina Difosfato/genética , Guanosina Trifosfato/genética , Humanos , Ligação Proteica/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/isolamento & purificação , Proteína rhoA de Ligação ao GTP/isolamento & purificação
7.
JCI Insight ; 5(14)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32544090

RESUMO

During the growth of lymphatic vessels (lymphangiogenesis), lymphatic endothelial cells (LECs) at the growing front sprout by forming filopodia. Those tip cells are not exposed to circulating lymph, as they are not lumenized. In contrast, LECs that trail the growing front are exposed to shear stress, become quiescent, and remodel into stable vessels. The mechanisms that coordinate the opposed activities of lymphatic sprouting and maturation remain poorly understood. Here, we show that the canonical tip cell marker Delta-like 4 (DLL4) promotes sprouting lymphangiogenesis by enhancing VEGF-C/VEGF receptor 3 (VEGFR3) signaling. However, in lumenized lymphatic vessels, laminar shear stress (LSS) inhibits the expression of DLL4, as well as additional tip cell markers. Paradoxically, LSS also upregulates VEGF-C/VEGFR3 signaling in LECs, but sphingosine 1-phosphate receptor 1 (S1PR1) activity antagonizes LSS-mediated VEGF-C signaling to promote lymphatic vascular quiescence. Correspondingly, S1pr1 loss in LECs induced lymphatic vascular hypersprouting and hyperbranching, which could be rescued by reducing Vegfr3 gene dosage in vivo. In addition, S1PR1 regulates lymphatic vessel maturation by inhibiting RhoA activity to promote membrane localization of the tight junction molecule claudin-5. Our findings suggest a potentially new paradigm in which LSS induces quiescence and promotes the survival of LECs by downregulating DLL4 and enhancing VEGF-C signaling, respectively. S1PR1 dampens LSS/VEGF-C signaling, thereby preventing sprouting from quiescent lymphatic vessels. These results also highlight the distinct roles that S1PR1 and DLL4 play in LECs when compared with their known roles in the blood vasculature.


Assuntos
Linfangiogênese/genética , Receptores de Esfingosina-1-Fosfato/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular , Proliferação de Células , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Proteínas de Membrana/genética , Camundongos , Pseudópodes/genética , Pseudópodes/metabolismo , Transdução de Sinais , Estresse Mecânico
8.
Cells ; 8(5)2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108880

RESUMO

Angiopoietins 1-4 (Ang1-4) represent an important family of growth factors, whose activities are mediated through the tyrosine kinase receptors, Tie1 and Tie2. The best characterized are angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2). Ang1 is a potent angiogenic growth factor signaling through Tie2, whereas Ang2 was initially identified as a vascular disruptive agent with antagonistic activity through the same receptor. Recent data demonstrates that Ang2 has context-dependent agonist activities. Ang2 plays important roles in physiological processes and the deregulation of its expression is characteristic of several diseases. In this review, we summarize the activity of Ang2 on blood and lymphatic endothelial cells, its significance in human physiology and disease, and provide a current view of the molecular signaling pathways regulated by Ang2 in endothelial cells.


Assuntos
Angiopoietina-2/metabolismo , Permeabilidade Capilar , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Animais , Biomarcadores Tumorais/metabolismo , Células Endoteliais/metabolismo , Endotélio Linfático/citologia , Endotélio Vascular/citologia , Humanos , Inflamação/metabolismo , Camundongos , Receptor de TIE-1/metabolismo , Receptor TIE-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA