Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786847

RESUMO

This study aimed to evaluate the influence of denture cleansers on the color, stability, and surface roughness of three-dimensional (3D)-printed denture base resins modified with zirconium dioxide nanoparticles (nano-ZrO2). A total of 440 specimens were fabricated using one heat-polymerized resin, and two 3D-printed resins (NextDent and ASIGA). According to the nano-ZrO2 content, the specimens for each resin were divided into five groups (0%, 0.5%wt, 1%wt, 3%wt, and 5%wt). Each concentration was divided into four subgroups (n = 10) based on the immersion solution (distilled water, sodium hypochlorite, Corega, and Fittydent) and immersion duration (360 and 720 days). The color changes (∆E00) and surface roughness (Ra, µm) of each specimen were measured at different time intervals (base line, 360 days, 720 days) using a spectrophotometer and a non-contact profilometer, respectively. The results were statistically analyzed using ANOVA and a post hoc Tukey's test (α = 0.05). Sodium hypochlorite showed the highest significant color change of all the denture base resins (p < 0.001). The average value of ΔE00 for sodium hypochlorite was significantly higher than the values for the other solutions (Fittydent, Corega, and water) (p < 0.001). Color stability was significantly affected by immersion time for all types of solutions except Corega (p < 0.001). All of the tested immersion solutions (distilled water, sodium hypochlorite, Corega, and Fittydent) showed a significant increase in the surface roughness of all the denture base resins (p < 0.05). Surface roughness was substantially increased by immersion time for all types of solution except Fittydent (p < 0.001). Denture cleansers can result in substantial color change and affect the surface roughness of unmodified and nanoparticle-modified denture base resins. Therefore, the selection of denture cleanser and appropriate types of material is critical for denture longevity.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38668159

RESUMO

This study aimed to evaluate and compare the impact of additives such as ZrO2 and SiO2 nanoparticles (ZrO2NP or SiO2NP) on the hardness, surface roughness, and color stability of 3D printed provisional restorations. Two hundred samples in total were printed using 3D printed resins (ASIGA, and NextDent). Each resin was modified with ZrO2NPs or SiO2NPs in two different concentrations (0.5 wt% and 1 wt%), while one group was kept unmodified (n = 10). Disc-shaped (15 × 2.5 mm) samples were designed and printed in accordance with the manufacturer's recommendation. Printed discs were evaluated for color changes through parameters CIELAB 2000 system (ΔE00), hardness using Vickers hardness test, and surface roughness (Ra) using a noncontact profilometer. After calculating the means and standard deviations, a three-way ANOVA and Tukey post hoc test were performed at α = 0.05. The addition of ZrO2NPs or SiO2NPs to ASIGA and NextDent resins significantly increased the hardness at a given level of concentration (0.5% or 1%) in comparison with pure (p < 0.001), with no significant difference between the two modified groups per resin type (p > 0.05). The highest hardness value was detected in 1% ZrO2NPs with 29.67 ± 2.3. The addition of ZrO2NPs or SiO2NPs had no effect on the Ra (p > 0.05), with 1% ZrO2NPs showing the highest value 0.36 ± 0.04 µm with NextDent resin. ZrO2NPs induced higher color changes (∆E00), ranging from 4.1 to 5.8, while SiO2NPs showed lower values, ranging from 1.01 to 1.85, and the highest mean ∆E00 was observed in the 1% ZrO2NPs group and NextDent resin. The incorporation of ZrO2NPs and SiO2NPs in 3D printed provisional resins increased the hardness without affecting the surface roughness. The optical parameters were significantly affected by ZrO2NPs and less adversely affected by SiO2NPs. Consequently, care must be taken to choose a concentration that will improve the materials' mechanical performance without detracting from their esthetic value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA