Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38082786

RESUMO

Skull-stripping, an important pre-processing step in neuroimage computing, involves the automated removal of non-brain anatomy (such as the skull, eyes, and ears) from brain images to facilitate brain segmentation and analysis. Manual segmentation is still practiced, but it is time-consuming and highly dependent on the expertise of clinicians or image analysts. Prior studies have developed various skull-stripping algorithms that perform well on brains with mild or no structural abnormalities. Nonetheless, they were not able to address the issue for brains with significant morphological changes, such as those caused by brain tumors, particularly when the tumors are located near the skull's border. In such cases, a portion of the normal brain may be stripped, or the reverse may occur during skull stripping. To address this limitation, we propose to use a novel deep learning framework based on nnUNet for skull stripping in brain MRI. Two publicly available datasets were used to evaluate the proposed method, including a normal brain MRI dataset - The Neurofeedback Skull-stripped Repository (NFBS), and a brain tumor MRI dataset - The Cancer Genome Atlas (TCGA). The method proposed in the study performed better than six other current methods, namely BSE, ROBEX, UNet, SC-UNet, MV-UNet, and 3D U-Net. The proposed method achieved an average Dice coefficient of 0.9960, a sensitivity of 0.9999, and a specificity of 0.9996 on the NFBS dataset, and an average Dice coefficient of 0.9296, a sensitivity of 0.9288, a specificity of 0.9866 and an accuracy of 0.9762 on the TCGA brain tumor dataset.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Crânio/anatomia & histologia , Crânio/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia
2.
Heliyon ; 7(7): e07616, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34368482

RESUMO

Outlier scanpaths identification is a crucial preliminary step in designing visual software, digital media analysis, radiology training and clustering participants in eye-tracking experiments. However, the task is challenging due to the visual irregularity of the scanpath shapes and the difficulty in dimensionality reduction due to geometric complexity. Conventional approaches have used heat maps to exclude scanpaths that lack a similarity pattern. However, the typically-used packages, such as ScanMatch and MultiMatch often generate discordant results when outlier identification is done empirically. This paper introduces a novel outlier evaluation approach by integrating the fractal dimension (FD), capturing the geometrical complexity of patterns, as an additional parameter with the heat map. This additional parameter is used to evaluate the degree of influence of a scanpath within a dataset. More specifically, the 2D Cartesian coordinates of a scanpath are fitted to a space filling 1D fractal curve to characterise its temporal FD. The FDs of the scanpaths are then compared to match their geometric complexity to one another. The findings indicate that the FD can be a beneficial additional parameter when evaluating the candidacy of poorly matching scanpaths as outliers and performs better at identifying unusual scanpaths than using other methods, including scanpath matching, Jaccard, or bounding box methods alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA