Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 56(2): 50, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236506

RESUMO

Nowadays, there is a global shortage in feed supply for animal nutrition; however, there are a considerable amount of agro-industrial co- and by-products that may offer a reasonable solution. Flaxseed cake (FSC) is a by-product of flaxseed for oil extraction rich in n-3 α-linolenic acid (ALA). Thus, the dietary inclusion of FSC on laying performance, egg quality, and serum and egg trace elements (Se, Zn, and Fe) was evaluated using Hisex White hens. The hens were distributed to three equal experimental treatments and provided diets including 0%, 5%, or 10% FSC from 48 to 58 weeks of age. Findings clarified that up to 10% FSC in the laying hen diet had no detrimental effect on laying rate, egg mass, and feed utilization. It was found that FSC resulted in a valuable source of protein, energy, macro- (Ca and P), micro- (Se, Zn and Fe) elements, and essential amino acids, with arginine being the highest. Dietary FSC did not negatively influence the egg quality traits, as well as egg sensory attributes. Including 5% or 10% FSC in diet did not significantly affect serum total protein and renal function in terms of creatinine, uric acid, and uric acid-to-creatinine ratio. Different FSC levels did not influence the chemical composition of eggs and trace elements in serum and eggs. It could be concluded that FSC is a valuable feedstuff that can provide a good source of energy, protein, amino acids, and macro- and micro-elements for hens' nutrition. The inclusion of up to 10% of FSC in hens diet did not adversely influence egg laying performance, egg quality of both fresh and stored eggs, sensory attributes, and nutritional composition, as well as Se, Zn, and Fe in serum and eggs due to balanced nutrient profile of FSC.


Assuntos
Linho , Oligoelementos , Animais , Feminino , Galinhas , Creatinina , Ácido Úrico , Óvulo , Dieta/veterinária , Ferro
2.
Aquac Nutr ; 2023: 6700708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303607

RESUMO

Despite the usage of nanoparticles (NPs) is rapidly increasing, several experts have noted the risk of their release into ecosystems and their potential negative impacts on biological systems. However, the available studies on the neurobehavioral impacts of aluminum oxide nanoparticles (Al2O3NPs) on aquatic organisms are little. Hence, this study targeted to ascertain the harmful effects of Al2O3NPs on behavioral characteristics and genotoxic and oxidative damages in Nile tilapia fish. In addition, the beneficial role of chamomile essential oil (CEO) supplementation in reducing these effects was also investigated. In the current study, fish were distributed into 4 equal groups (n = 60 fish per group). The control group was fed a plain diet only, the CEO group received a basic diet complemented with CEO at a level of 2 mg/kg diet, the ALNP group received a basic diet and was exposed to an approximate concentration of 1/10th LC50 of ALNPs nearly 5.08 mg/L, and the combination group (ALNPs/CEO group) received a basal diet coadministered with ALNPs and CEO at the aforementioned percentages. The findings revealed that O. niloticus exhibit neurobehavioral changes along with changes in the level of GABA, monoamines in the brain tissue, and serum amino acid neurotransmitters, besides a reduction of AChE and Na+/K+-ATPase activities. In addition to brain tissue oxidative damage with upregulation of proinflammatory and stress genes, such as HSP70 and caspase-3, supplementation of CEO significantly reduced the negative impacts of ALNPs. These results showed that CEO has neuroprotective, antioxidant, genoprotective, anti-inflammatory, and antiapoptotic properties in fish that have been exposed to ALNPs. Therefore, we advise its usage as a valuable addition to fish diet.

3.
Life (Basel) ; 13(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37374022

RESUMO

The high environmental temperature is one of the main factors challenging the broiler industry during the hot seasons due to it causing more thermal stress. This study aimed to find the effects of heat stress under hot arid environments on the growth performance, carcass traits, and nutritional composition of breast meat in broiler chickens. A total of 240 broiler chickens were allocated into two groups: (1) a control group (thermoneutral environment (TN); 24 ± 0.17 °C) and (2) a heat stress (HS) group, with 30 replicates in each environment. From d 25 to 35 of age, the broiler chickens in the HS group were exposed to 8 h/day of thermal stress (34 ± 0.71 °C) from 8:00 am to 4:00 pm, while the actual recorded value of ambient temperature was 31 °C on average with a relative air humidity (RH) between 48 and 49% for 10 consecutive days (d 25-35 of age). The live body weight (BW), weight gain, and feed intake significantly deteriorated (p < 0.05), and the feed conversion ratio tended to deteriorate (p = 0.055) in the HS group. The hot and cold carcass yields increased (p < 0.05), while the relative heart and liver weights decreased (p < 0.05) in the broiler chickens exposed to HS. The breast meat yield tended to decrease (p = 0.057), while wing meat yields increased significantly (p = 0.050) in heat-stressed broiler chickens. The shrinkage of the carcass percentage increased during chilling (p < 0.001) in the HS group. The ultimate pH values; cooking loss; and contents of moisture, crude protein, and fat of breast meat showed no response (p > 0.05) between the TN and HS groups. The heat-stressed broiler chickens presented lower levels of arachidonic acid (C20:4 (n-6)) (p = 0.01) and eicosadienoic acid (C20:2 (n-6)) (p = 0.050) in the breast meat, while the variations in n-3 polyunsaturated fatty acid were insignificant (p > 0.05) between the groups. In conclusion, our findings confirmed that the hot arid environments could reduce the production performance of broiler chickens and increase carcass shrinkage during chilling, but did not compromise the n-3 polyunsaturated fatty acid and cooking loss in the breast meat.

4.
Poult Sci ; 102(6): 102666, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37080007

RESUMO

One-day-old male broiler chickens (Ross 308) were assigned to 3 dietary treatments in a completely randomized design with 8 replicates per treatment, and 4 birds per replicate. The control group was fed a basal control diet, and the 2 test groups were fed the basal control diet supplemented with 150 and 300 mg/kg of protected complex of biofactors and antioxidants [P(BF+AOX)], respectively. The P(BF+AOx) is a combination of vitamins, L-tryptophan and biofactors such as fermentation extracts (Jefo Nutrition Inc., Saint-Hyacinthe, QC, Canada). Dietary P(BF+AOX) did not affect growth performance and breast meat quality (water holding capacity, cooking loss, shear force, and texture profile analysis), but the addition of 150 mg/kg of P(BF+AOX) decreased the relative weight of liver, heart, and spleen (P < 0.05). The addition of 150 mg/kg of P(BF+AOX) tended to increase (P = 0.051) the cold carcass yield. The addition of 150 and 300 mg/kg of P(BF+AOX) decreased (P = 0.002) the cooler carcass shrink, but the relative weight of fat pad increased (P = 0.032) in chickens fed 300 mg/kg P(BF+AOx) than in those of birds fed the control diet. On the other hand, the addition of 300 mg/kg of P(BF+AOX) decreased (P = 0.041) the serum level of uric acid compared with those of birds fed the basal diet. Broiler chickens fed diets supplemented with 150 mg/kg of diet had higher (P < 0.05) mRNA expressions of jejunal SOD1 and interleukins 6 and 10 (IL-6, IL-10). The findings suggest that P(BF+AOX) could be considered as a functional nutrient in broiler diets up to a concentration of 150 mg/kg because of its favorable effects on maintaining intestinal barrier function as well as carcass traits, while excess levels (300 mg/kg) had exhibited superior effect on the serum level of uric acid compared with those of birds fed the control diet.


Assuntos
Antioxidantes , Galinhas , Animais , Masculino , Antioxidantes/metabolismo , Ácido Úrico , Suplementos Nutricionais/análise , Dieta/veterinária , Carne/análise , Expressão Gênica , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
5.
Front Immunol ; 14: 1072787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798131

RESUMO

Increase in drug resistance as well as ineffective immunization efforts against various pathogens (viruses, bacteria and fungi) pose a significant threat to the poultry industry. Spirulina is one of the most widely used natural ingredients which is becoming popular as a nutritional supplement in humans, animals, poultry and aquaculture. It contains protein, vitamins, minerals, fatty acids, pigments, and essential amino acids. Moreover, it also has considerable quantities of unique natural antioxidants including polyphenols, carotenoids, and phycocyanin. Dietary supplementation of Spirulina can beneficially affect gut microbial population, serum biochemical parameters, and growth performance of chicken. Additionally, it contains polyphenolic contents having antibacterial effects. Spirulina extracts might inhibit bacterial motility, invasion, biofilm formation, and quorum sensing in addition to acting directly on the bacterium by weakening and making the bacterial cell walls more porous, subsequently resulting in cytoplasmic content leakage. Additionally, Spirulina has shown antiviral activities against certain common human or animal viruses and this capability can be considered to exhibit potential benefits against avian viruses also. Spirulan, a calcium-rich internal polysaccharide of Spirulina, is potentially responsible for its antiviral effect through inhibiting the entry of several viruses into the host cells, boosting the production of nitric oxide in macrophages, and stimulating the generation of cytokines. Comparatively a greater emphasis has been given to the immune modulatory effects of Spirulina as a feed additive in chicken which might boost disease resistance and improve survival and growth rates, particularly under stress conditions. This manuscript reviews biological activities and immune-stimulating properties of Spirulina and its potential use as a dietary supplement in poultry to enhance growth, gut health and disease resistance.


Assuntos
Spirulina , Animais , Humanos , Spirulina/química , Aves Domésticas , Resistência à Doença , Suplementos Nutricionais , Antivirais
6.
Foods ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36673457

RESUMO

The effects of rice bran oil (RBO) as an alternative dietary energy source on nutritional properties and fatty acid deposition in broiler chickens are scarce in the literature. One-day-old chickens (broiler Ross 308) were assigned in a completely randomized design with three treatment diets and nine replicates of four chickens per replicate. A basal control diet contained 4~5% palm oil (T1) in the starter and finisher phases, respectively. Treatments 2 to 3 were fed diets formulated with 50% (T2) and 100% (T3) of RBO as a fat source instead of palm oil (PO). Replacing dietary PO with RBO improved the feed conversion ratio (FCR) by 6% (p = 0.017) over the total period of the experiment (1−38 d of age). The feeding of RBO (T3) showed the highest (p < 0.001) cooking loss values in the breast meat. However, compared with other groups, the blend of PO and RBO group (T2) displayed a lower cooking loss value in the thigh meat. In breast meat, the protein content was lowered (p = 0.007), while the fat content was higher (p < 0.001) in male broiler chickens fed dietary RBO (T2 and T3). Total inclusion of dietary RBO (T3) decreased (p = 0.034) the proportion of saturated fatty acids (ΣSFAs) but increased (p = 0.02) linoleic acid. In addition, α-linolenic acid (ALA) increased (p < 0.001) in male broiler chickens fed dietary RBO (T2 and T3), and the highest deposit level occurred by the total inclusion of RBO (T3). Total omega 3 fatty acids (∑n-3) increased (p = 0.013), while the ratio of n-6 to n-3 polyunsaturated fatty acid (PUFA) decreased (p = 0.046) in male broiler chickens fed dietary RBO (T3) as compared with the control diet (PO; T1). In conclusion, compared with dietary PO (control diet, T1), the total inclusion of dietary RBO at 50 kg/metric ton feed (T3) increased ∑n-3, ALA, and reduced n-6:n-3 PUFA ratio in the breast meat, but cooking loss values were larger in breast and thigh meats. The blend of dietary PO and RBO (T2) was better for both production performance targets (feed intake and FCR), cooking loss values, and deposition of ALA in the breast meat. The inclusion of dietary RBO into broiler diets needs further study, but the present experiment aids in expanding research knowledge to make that possible.

7.
Animals (Basel) ; 12(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36290194

RESUMO

Gum Arabic (GA) belongs to the Fabaceae family and contains indigestible soluble fibers (80-85%) that could be fermented by commensal bacteria to enhance performance, immune response, and intestinal integrity. This study aimed to investigate the effects of GA on performance, serum biochemical indicators, microbiota, immune-related gene expression, and histological changes in chickens. Six GA levels (0.0, 0.12, 0.25, 0.5, 0.75, 1.0%) were allocated using a total of 432 1-day-old male chickens (12 replicates with 6 chickens each). Growth performance was evaluated on days 10 and 24 of age. Blood parameters, organ pH levels, and intestinal health were determined on day 10 of age. Results showed that GA at 0.12% increased weight gain and 0.12 to 1.0% decreased feed intake but was best in feed conversion ratio and production efficiency except for 1.0% on day 1-10 of age. There was an increase in the thymus weight at GA level 0.25 to 0.75%. GA decreased the pH value of the proventriculus (at 0.50 and 1.0%) as well as the duodenum and cecum (at 0.12 and 1.0%). Chickens fed GA between 0.25 to 1.0% had higher protein and HDL, but lower cholesterol, LDL, and creatinine. Globulin was increased at 0.50% GA, while glucose and triglycerides were decreased (at 0.25 and 0.75% GA, respectively). The immune-related gene expression was reduced, except for 0.25% GA, which increased IL-10. Furthermore, chickens fed GA (0.25 to 0.75%) had higher Lactobacillus spp. and lower Salmonella spp. and Escherichia coli. When chickens received GA, the villus length and length to crypt ratio were higher, which also improved the integrity of intestinal epithelial cells and early duodenal development. We conclude that using GA (0.25 to 0.75%) as a natural prebiotic positively affects the performance, microbiota, immune response, morphology, and gut health of post-hatched chickens. More studies are needed to determine the potential mechanism of GA on broiler chickens.

8.
Trop Anim Health Prod ; 54(4): 244, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913613

RESUMO

Gum Arabic (GA) is a natural product containing soluble fiber that is indigestible in the gastrointestinal tract and has been used as a traditional medicine to treat many diseases such as intestinal inflammation, kidney disease, and liver disorders, which may be reflected in the improved performance of broiler chickens when used. Therefore, the main objective of the current study was to evaluate the effects of GA on the performance, immune system, visceral organs, functional tests, and histological changes of the ileum, liver, and kidneys of broilers. A total of 432 1-day-old male broilers were allocated to six dietary treatments (0.0, 0.12, 0.25, 0.5, 0.75, and 1.0% GA) for 35 days. Performance, internal organs, and blood biochemical indices were measured. Morphology and histometry of the intestine were also performed. Meanwhile, tissues of the ileum, liver, and kidney were examined and evaluated microscopically to observe histological changes. All levels of GA (0.12 to 1.0%) had a positive effect on growth performance and feed conversion ratio. In addition, GA had no effect on the relative weight of lymphoid and visceral organs, except for a linear response in the bursa and liver. The levels of GA (0.12 and 0.25%) showed the potential to decrease serum uric acid, creatinine, and alanine aminotransferase. The remarkable increase in small intestinal morphology of chickens fed GA and an increase in all histometric values of the ileum. All histological changes in the intestine, liver, and kidneys improved in chickens fed the basal diet containing 0.12 to 0.50% GA. These results provide useful evidence for the potential use of GA powder (Acacia senegal) as a natural prebiotic to improve performance and intestinal, liver, and kidney health in broiler chickens.


Assuntos
Acacia , Galinhas , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais , Goma Arábica/farmacologia , Nível de Saúde , Masculino , Prebióticos , Senegal , Ácido Úrico
9.
Animals (Basel) ; 12(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35049789

RESUMO

A total of 150 broiler chicks were used to determine the impact of dietary cinnamon bark powder (CBP; Cinnamomum verum) on breast meat quality, growth performance, and carcass characteristics of birds under coccidiosis, as one of the protozoan parasitic diseases. A total of 5 replicates of birds received 1 of the following 6 groups for 34 days: control groups (1 and 2) received a basal diet without the addition of CBP or salinomycin; group 3 received a basal diet with 0.066 g salinomycin; groups 4-6 were given a basal diet supplemented with 2, 4, and 6 g CBP/kg feed, respectively. On day 21, 4 × 104/100 µL of Eimeria tenella oocysts/bird were challenged, except for the negative control (NC). At the end of the experimental trial, five birds/group were sampled for carcass characteristics and breast attributes. Overall, emeriosis negatively affects slaughter body mass, carcass yield, and the majority of carcass characteristics in birds, and cinnamon can mitigate these effects. Cinnamon groups, particularly at the 2 g level, alleviated the negative effect on performance caused by coccidia infestation to the same or greater extent as the negative control and salinomycin treatment groups. Furthermore, when compared with the other experimental groups, the addition of cinnamon improved some physicochemical properties with some affecting meat quality, such as decreasing MFI and increasing toughness in cinnamon-treated groups. In summary, it can be concluded that CBP can enhance the shelf life, carcass, and quality of birds' meat by maximizing the productive performance efficiency and breast meat productivity of birds under coccidiosis infestation. Further research is required to investigate the use of cinnamon to optimize the quality of meat and the productivity of both healthy and diseased broilers.

10.
Animals (Basel) ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073592

RESUMO

Improving broilers' production in the hot region is essential to overcome heat-stress challenges. The current experiment examined the effects of betaine's fortification (0.0, 0.075, 0.10, and 0.15%) to broiler chickens during days 1-40 of age. The growth period was divided into the starter (1-18 d) and growing-finishing (19-40 d). During the starter period, there was no heat challenge, and all birds were kept under the same conditions. At 18 days of age, half of the birds were kept under thermos-neutral temperature (TN, 22-24 °C), while the other half were kept under high temperature (HT, 35 °C). However, the production efficiency factor (PEF) was the best (p < 0.05) for birds that received 0.10% betaine. Betaine fortification improved (p < 0.05 and 0.01) body weight gain (BWG), feed conversion ratio (FCR), and production efficiency factor (PEF) in the cumulative finisher heat-stress challenge period (19-40 d). The best performance was achieved at 0.1% betaine fortification with 84 g gain, 4.6 points improvement in FCR, and 24 points improvements in PEF as compared to no betaine fortification. The heat-stressed group consumed less feed (239 g), gained less weight (179 g), converted feed less efficiently (2.6 points), and, as a result, had lower FEF (29 points) as compared to the TN group. Conclusively, heat challenge had a powerful effect on growth performance, meat characteristics, and blood parameters, especially during the grower-finisher period. Betaine fortification (0.1%) during heat stress reduced the negative impact on performance and improved production efficiency, suggesting that betaine is a useful nutritional tool under stress conditions that deserves further investigation.

11.
Front Vet Sci ; 7: 124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32232061

RESUMO

This study aimed to investigate the effects of different dietary levels of blue lupine (Lupinus angustifolius) seed meal with or without probiotics (Bacillus subtilis) in broiler diets on the growth performance, carcass characteristics, internal and immune organs, and gut morphology. Three experimental diets containing 0, 20, and 30% of blue lupine, with or without probiotics, were formulated and fed to 144 day (d)-old Ross 308 broiler chickens. Overall, chicks fed blue lupine meal diets, especially at the 30% rate, showed improved growth, feed performance parameters, and carcass characteristics in comparison to chicks fed a soybean meal-based diet. For example, a 30% blue lupine diet resulted in a significant increase in the duodenum length percentage of 35 d-old broilers; the addition of probiotics had no-effects on the dressing, thigh, and leg percentages of 21- and 35 d-old broilers and the drumstick and leg percentages of 35 d-old broilers. In conclusion, a 30% blue lupine seed diet with the addition of probiotics could provide a cheap source of protein without negative effects on the growth performance, carcass characteristics, immune organs and gut morphology of broilers.

12.
Front Vet Sci ; 7: 632101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33521096

RESUMO

This study examined the effect of supplemental betaine on live performance, selected blood parameters, and gene expression of water channel proteins (Aquaporins, AQP) of broiler chicks delayed in placement for 48 h post-hatch. In total, 540 newly-hatched male broiler chicks were obtained from a local hatchery and were randomly allotted to one of five treatments with nine replicates per treatment (12 chicks per replicate). Chicks were either placed immediately, control; held for 48 h post-hatch with no access to feed or water, Holdnull; held for 48 h with free access to drinking water only, HoldW; held for 48 h with free access to drinking water supplemented with 1 ml per L of betaine solution (40% betaine), HoldB1; or held for 48 h with free access to drinking water supplemented with 2 ml per L of betaine solution (40% betaine), HoldB2 group. The results showed that post-hatch holding for 48 h depressed feed intake and body weight gain during the entire 15 d study period with no beneficial effect of supplemental betaine. Chicks in the HoldB2 group had elevated serum glucose, triglycerides, and aspartate aminotransferase 48 h post-hatch. Early water deprivation directly affected the brain proopiomelanocortin (POMC) and hepatic glucocorticoid receptors (GR) expression and induced significant changes in various aquaporins (AQP1, AQP2, AQP4, and AQP9). In conclusion, betaine supplementation to chicks held for 48 h post-hatch resulted in some changes in blood biochemical indices with no effects on performance during the first 15 days of life. The results suggest that betaine supplementation could ameliorate the stressful effects of water deprivation on POMC and GR expression and maintain cellular osmosis through interactions with variable aquaporins expression, particularly the AQP1 and AQP2. Further investigations are required to investigate the molecular mechanisms underlying the selective regulatory expression of different aquaporins in relation to betaine supplementation.

13.
Animals (Basel) ; 9(9)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438458

RESUMO

Lohmann Brown hens (n = 420), at 28 weeks of age, were divided into five dietary treatments, and each treatment included six replicates of 14 laying hens. Dietary crude protein (14%) was presented as the control diet. Dietary L-Thr was added to the control diet for 12 weeks. Dietary Thr levels are 0.43%, 0.49%, 0.57%, 0.66%, and 0.74%, based on digestible base. From 28 to 40 weeks, hen-day egg production presented a quadratic trend to supplementing dietary Thr (R2 = 0.96, p = 0.02), and reached a maximum level at 0.58%. Serum uric acid demonstrated a quadratic trend (R2 = 0.62, p = 0.02) at 0.59%. Both serum total cholesterol and 3-hydroxy-3-methylglutaryl (HMG-CoA) reductase showed lower levels (p < 0.05) at 0.66% Thr. Serum CuZn-SOD elevated (p < 0.05) at 0.49%, 0.57%, and 0.66% Thr, as compared to the control group, and showed a quadratic trend (R2 = 0.87, p = 0.003) at 0.56%. Supplemental L-Thr decreased (p < 0.05) the expression of ileal HSP70 at 0.66% Thr. In summary, the optimal dietary Thr requirements to optimize egg production, serum uric acid, and serum CuZn-SOD were 0.58%, 0.59%, and 0.56%, respectively, by regression analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA