Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23350, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38170112

RESUMO

Flexible capacitive energy storage applications require polymer nanocomposites with high dielectric properties, which can be accomplished by addition of inorganic nanofillers to the polymer matrix. Low-density polyethylene (LDPE), known for its good dielectric characteristics and wide use in electrical insulation have been investigated for the desired applications. However, the improvement of its breakdown strength still continues with the use of various nanomaterials employed as nanofillers. In this study, a waste-derived material known as biomass fly ash (BFA) as a nanofiller to improve the dielectric properties of LDPE has been explored. BFA exhibits versatility in its composition with various metal oxides, making it an attractive choice as a nanofiller. The BFA-LDPE sheets were prepared using a conventional solvent mixing and subsequent hot-pressing process, incorporating BFA loadings ranging from 1 % to 4 wt%. The effects of different BFA loadings were carefully examined, and the synthesized nanocomposites were extensively characterized using various characterization methods, such as XRD, SEM, FTIR, TGA and dielectric constant measurements, to investigate the crystallographic properties, morphology, chemical composition, and thermal stability. Among all the nanocomposites, 4 wt%BFA-LDPE exhibited the highest dielectric constant, with a value of 11.58, compared to simple LDPE that had a dielectric constant of 8.33. This improvement is ascribed to the synergistic effects of different inorganic metal oxides (SiO2, MgO, and Fe2O3) present in BFA. The results showed a significant enhancement in dielectric properties, indicating that the waste-derived BFA can be purposefully applied as an effective nanofiller in the LDPE-based composites with even less than 4% loading for electrical insulating applications in future studies.

2.
Sci Total Environ ; 912: 169218, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092215

RESUMO

Fossil and renewable fuels are used by industrial units that produce energy-intensive products. Competitive fuel pricing encourages these fuel sources' usage globally, particularly in developing nations, which leads to large volumes of byproducts like fly ash among thermal power plant operators. The elements and compounds found in coal fly ash (CFA) and biomass fly ash (BFA) can be utilized through several engineering applications. This study aims to assess typical CFA and BFA samples quantitatively and qualitatively via techniques such as ultimate analysis (CH-S), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray fluorescence (XRF) elemental analysis, and ash fusion temperature (AFT), to anticipate the ideal ratios of coal to biomass blends for combustion applications while adhering to environmental regulations. The optimal blend, consisting of 75 % CFA and 25 % BFA, exhibited improved carbon (C%) and hydrogen (H%) percentages, increasing from 2.5 % to 4.67 % and from 0 % to 0.12 %, respectively. These improvements were further confirmed by the observed functional groups in FTIR, indicating a rising trend in both carbon and hydroxyl groups from BFA to CFA. XRF and XRD also confirmed it and TGA also showed optimum mass loss (ML%) behavior of 14.55 % for 75CFA + 25BFA. According to slagging and fouling indices, the values of RB/A, Rs, and Fu indicate a reduction in slagging and fouling issues through the blending of CFA with BFA. Simultaneously, the fusion temperature increased from 1181 °C to 1207 °C. CFA was found to increase the AFT of the BFA from 1197 °C to 1247 °C, mitigating their propensity. This suggests that a blend of 75CFA + 25BFA results in lower to medium range of slagging and fouling. However, AFI and BAI indicate a slightly higher range. AFT analysis further validates the conclusions drawn from the indices. The ternary phase diagram shows that the ash's melting point increases in the optimum blend. This is attributed to a reduced content of K2O (<15 %) and increased proportions of >50 % CaO and SiO2, effectively inhibiting slagging, agglomeration, and deposition. Meanwhile, the blend maintains a medium level of acidity and susceptively to corrosion, as observed in the case of 75CFA + 25BFA. The identification of optimal blend ratios can be anticipated to offer essential solutions for future research, aiming to ensure smooth industrial operations and regulatory compliance in power plants.

3.
Heliyon ; 9(11): e21640, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027783

RESUMO

In this era, renewable energy technologies are suitable to meet the challenges of fossil fuel depletion and global warming. Thus, hydrogen is gaining attention as an alternative clean energy carrier that can be produced from various methods, one of them is the iodine-sulfur (I-S) cycle which is a thermochemical process. The I-S cycle requires a material that can withstand an extremely corrosive environment at high temperatures. Immersion tests were conducted on bare superalloy Hastelloy X (HX), MoSi2, and SiC-MoSi2 coated HX, deposited in physical vapor deposition (PVD) to evaluate their corrosion resistance. Bare HX exhibited a high corrosion rate of 208.1 mm yr-1 when exposed to 98 wt% sulfuric acid at 300 °C. In contrast, HX with MoSi2 coating showed a much lower corrosion rate of 23.5 mm yr-1, and HX with SiC-MoSi2 coating demonstrated the lowest corrosion rate at 6.5 mm yr-1 under the same conditions. The coated samples were analyzed via FESEM before and after corrosion testing. The FESEM images reveal the formation of coalescent particles on the surface of the coating. The elemental analysis illustrates an increased concentration of silicon and oxygen in the corroded samples. Elemental mapping of these samples show a uniform distribution of elements over the sample. These findings contribute not only to materials science understanding but also to practical applications in hydrogen production via the I-S cycle, where corrosion-resistant materials are critical.

4.
Antioxidants (Basel) ; 12(10)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37891969

RESUMO

The oxidation of wine may be beneficial or harmful to its quality. On the one hand, controlled oxidation can lead to the development of desirable sensory characteristics for red wine, such as enhanced color stability. Alternatively, oxidation can lead to white wine browning and a decrease in fruity aromas, and the development of an off flavor and wine polyphenols are also involved. The presence of glutathione (GSH) can help mitigate the negative effects of oxidation by acting as a protective antioxidant. In order to better understand the antioxidant role played by GSH, wine polyphenols oxidation experiments by electrochemical means in the presence of GSH were carried out. The oxidation behavior of polyphenols representing different phenolic classes commonly found in wines, including protocatechuic acid (PCA), caffeic acid (CAF), epicatechin (EC), and rutin (Ru), was investigated using cyclic voltammetry and bulk electrolysis. We identified the oxidation products and reaction pathways of these polyphenols using ultra-high-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), in both the absence and the presence of glutathione (GSH). UPLC-MS was utilized to demonstrate that, in the presence of glutathione (GSH), the four molecules were subjected to electrochemical oxidation, resulting in the formation of mono- and bi-glutathione conjugates. A two-electron oxidation process combined with the removal of two protons is the first step in transforming polyphenol molecules. As a result, the corresponding quinone is formed. The quinone can then be reduced back to its original form by glutathione (GSH), or it can interact further with GSH to produce mono- and bi-glutathione conjugates. These results contribute to understanding and predicting the oxidative degradation pathway of polyphenols in wine. Understanding this process seems important for winemakers to control and optimize the sensory characteristics of their wines.

5.
Antibiotics (Basel) ; 10(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34827335

RESUMO

The use of various veterinary antibiotics (VAs) in animal husbandry raises serious concerns about the development of antibiotic resistance. Antibiotics such as tetracycline, oxytetracycline, sulfadiazine, norfloxacin, and enrofloxacin are the most frequently used antimicrobial compounds in animal husbandry and generate large eco-toxicological effects; however, they are still difficult to determine in a complex matrix such as swine manure. This study has developed an effective method for detecting five VAs in swine manure using Ultra-High-Performance Liquid Chromatography-Diode Array Detector (UHPLC-DAD) coupled with on-line solid-phase extraction (SPE). The results show that the mobile phase of ACN/0.01 M oxalic acid was the optimum at pH 3.0. VAs in a swine manure matrix were extracted using solid extraction buffer solution (T3) with 97.36% recovery. Sensitivity, accuracy, and precision were also evaluated. The validity study showed good linearity (R2 > 0.99). Limit of detection (LOD) was found to be from 0.1 to 0.42 µg mL-1 in the liquid fraction and from 0.032 to 0.58 µg g-1 dw in the solid fraction. The corresponding values of the limit of quantification (LOQ) ranged from 0.32 to 1.27 µg mL-1 for the liquid fraction and from 0.096 to 1.77 µg g-1 dw for the solid fraction. Therefore, the proposed method showed the potential applicability for detecting different antibiotic compounds from swine manure samples.

6.
Appl Catal B ; 2752020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33424127

RESUMO

The current study investigates a novel redox technology based on synthetic franklinite-like zinc-ferrite nanomaterial with magnetic properties and redox nature for potential use in water treatment. Physicochemical characterization revealed the nanoscale size and AB2O4 spinel configuration of the zinc-ferrite nanomaterial. The redox activity of nanoparticles was tested for degradation of diclofenac (DCF) pharmaceutical in water, without any added external oxidants and under dark experimental conditions. Results revealed ~90% degradation in DCF (10 µM) within 2 min of reaction using 0.17 g/L Zn1.0Fe2.0O4. Degradation of DCF was due to chemical reduction by surface electrons on zinc-ferrite and oxidation by oxygen-based radicals. Three byproducts from reduction route and eight from oxidation pathways were identified in the reaction system. Reaction pathways were suggested based on the identified byproducts. Results demonstrated the magnetic zinc-ferrite is a standalone technology that has a great promise for rapid degradation of organic contaminants, such as DCF in water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA