Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Protistol ; 93: 126062, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368736

RESUMO

Many ciliated protists prey on other large microbial organisms, including other protists and microscopic metazoans. The ciliate class Litostomatea unites both predatory and endosymbiotic species. The evolution of predation ability in ciliates remains poorly understood, in part, due to a lack of genomic data. To fill this gap, we acquired the transcriptome profiles of six predatory litostomateans using single-cell sequencing technology and investigated their transcriptomic features. Our results show that: (1) in contrast to non-predatory ciliates, the predatory litostomateans have expanded gene families associated with transmembrane activity and reactive oxidative stress response pathways, potentially as a result of cellular behaviors such as fast contraction and extension; (2) the expansion of the calcium-activated BK potassium channel gene family, which hypothetically regulates cell contractility, is an ancient evolutionary event for the class Litostomatea, suggesting a rewired metabolism associated with the hunting behavior of predatory ciliates; and (3) three whole genome duplication (WGD) events have been detected in litostomateans, with genes associated with biosynthetic processes, transmembrane activity, and calcium-activated potassium channel activity being retained during the WGD events. In addition, we explored the evolutionary relationships among 17 ciliate species, including eight litostomateans, and provided a rich foundational dataset for future in-depth phylogenomic studies of Litostomatea. Our comprehensive analyses suggest that the rewired cellular metabolism via expanded gene families and WGD events might be the potential genetic basis for the predation ability of raptorial ciliates.


Assuntos
Cilióforos , Comportamento Predatório , Animais , Cilióforos/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Evolução Molecular , Filogenia
2.
J Eukaryot Microbiol ; 71(1): e13007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37886908

RESUMO

Free-living litostomatean ciliates, prominent microeukaryote predators commonly encountered in freshwater and marine habitats, play vital roles in maintaining energy flow and nutrient cycles. Nevertheless, understanding their biodiversity and phylogenetic relationships remains challenging due to insufficient morphological information and molecular data. As a new contribution to this group, three haptorian ciliates, including two new species (Actinobolina bivacuolata sp. nov. and Papillorhabdos foissneri sp. nov.) and the insufficiently described type species, Actinobolina radians, were isolated from wetlands around Lake Weishan, China and investigated by a combination of living morphology, stained preparations, and 18S rRNA gene sequence data. An illustrated key of the valid species within the two genera is provided. In addition, we reveal the phylogenetic positions of these two genera for the first time. Although they differ in all key morphologic characters such as general appearance (ellipsoidal with numerous tentacles vs. cylindrical), extrusomes (stored in tentacles vs. anchored to pellicle), circumoral kinety (present vs. absent), composition of somatic kineties (kinetosome clusters vs. monokinetids), and number of dorsal brush rows (1 vs. 4), they both cluster in a fully supported clade in the phylogenetic tree, which indicates that the biodiversity and additional molecular markers of this group need further exploration.


Assuntos
Cilióforos , Filogenia , RNA Ribossômico 18S/genética , Genes de RNAr , China , Lagos
3.
Protist ; 175(1): 126007, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141417

RESUMO

The morphology, morphogenesis, and molecular phylogeny of Heterometopus palaeformis (Kahl, 1927) Foissner, 2016 were studied using microscopical observations on live and protargol-stained specimens as well SSU rRNA gene sequencing. The morphogenetic data for the genus are presented for the first time. Compared to other metopids, the morphogenesis of H. palaeformis is distinct since its (1) perizonal stripe rows 4 and 5 are involved in the formation of the opisthe's adoral polykinetids; (2) perizonal stripe rows 3-5 and two adjacent preoral dome kineties contribute to most of the opisthe's paroral membrane while perizonal stripe rows 1 and 2 contribute very little; (3) four kinety rows are formed to the left of the opisthe's adoral zone of polykinetids. The Chinese population resembles the original and neotype populations well in terms of general morphology - characterized by a life size of 55-120 × 10-20 µm, an elongate ellipsoidal body with a hardly spiralized flat preoral dome, about 18 somatic kineties and 20 adoral polykinetids. The SSU rDNA sequence of the present population exhibits a disparity of 1.33%-2.22% divergence from sequences of other populations. Nevertheless, phylogenetic analysis reveals that populations of H. palaeformis form a separate, stable cluster within the paraphyletic Metopidae clade.


Assuntos
Cilióforos , RNA Ribossômico , Filogenia , Anaerobiose , Cilióforos/genética , Morfogênese
4.
Mar Life Sci Technol ; 5(4): 573-584, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045546

RESUMO

Exogenous RNA poses a continuous threat to genome stability and integrity across various organisms. Accumulating evidence reveals complex mechanisms underlying the cellular response to exogenous RNA, including endo-lysosomal degradation, RNA-dependent repression and innate immune clearance. Across a variety of mechanisms, the natural anti-sense RNA-dependent defensive strategy has been utilized both as a powerful gene manipulation tool and gene therapy strategy named RNA-interference (RNAi). To optimize the efficiency of RNAi silencing, a comprehensive understanding of the whole life cycle of exogenous RNA, from cellular entry to its decay, is vital. In this paper, we review recent progress in comprehending the recognition and elimination of foreign RNA by cells, focusing on cellular entrance, intracellular transportation, and immune-inflammatory responses. By leveraging these insights, we highlight the potential implications of these insights for advancing RNA interference efficiency, underscore the need for future studies to elucidate the pathways and fates of various exogenous RNA forms, and provide foundational information for more efficient RNA delivery methods in both genetic manipulation and therapy in different organisms.

5.
Mol Phylogenet Evol ; 188: 107911, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648182

RESUMO

Marine planktonic ciliates are largely oligotrichs and choreotrichs, which are two subclasses of the class Spirotrichea. The current phylogenetic assignments of oligotrichs and choreotrichs are inconsistent with previous results based on morphological features, probably hindered by the limited information from a single gene locus. Here we provide 53 new sequences from small subunit ribosomal RNA (SSU rDNA), ITS1-5.8S rDNA-ITS2, and large subunit ribosomal RNA (LSU rDNA) gene loci in 25 oligotrich and choreotrich species. We also predict RNA secondary structures for the ITS2 regions in 55 species, 48 species of which are reported for the first time. Based on these novel data, we make a more comprehensive phylogenetic reconstruction, revealing consistency between morphological taxonomy and an updated phylogenetic system for oligotrichs and choreotrichs. With the addition of data from ciliature patterns and genes, the phylogenetic analysis of the subclass Oligotrichia suggests three evolutionary trajectories, among which: 1) Novistrombidium asserts an ancestral ciliary pattern in Oligotrichia; 2) the subgenera division of Novistrombidium and Parallelostrombidium are fully supported; 3) the three families (Tontoniidae, Pelagostrombidiidae and Cyrtostrombidiidae) all evolved from the most diverse family Strombidiidae, which explains why strombidiids consistently form polyphyletic clades. In the subclass Choreotrichia, Strombidinopsis likely possesses an ancestral position to other choreotrichs, and both phylogenetic analysis and RNA secondary structure prediction support the hypothesis that tintinnids may have evolved from Strombidinopsis. The results presented here offer an updated hypothesis for the evolutionary history of oligotrichs and choreotrichs based on new evidence obtained by expanding sampling of molecular information across multiple gene loci.


Assuntos
Cilióforos , Humanos , Filogenia , Cilióforos/genética , DNA Ribossômico , RNA , RNA Ribossômico
6.
Protist ; 174(4): 125975, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37453254

RESUMO

Ciliates in the order Pleurostomatida are found free-living in many habitats including within biofilms, but some (e.g. Pseudoamphileptus spp.) are ectocommensal on various hosts. Due to issues involving overall undersampling, the exact diversity and molecular phylogeny of this group remain largely underexplored. To combat this deficiency, detailed investigations were undertaken in northern China. As a result of these studies, we provide the morphological descriptions of two new species. Pseudoamphileptus apomacrostoma sp. nov., a new ectocommensal species, is characterized by the broadly oval cell shape, numerous scattered contractile vacuoles, and unique densely bounded extrusomes; Amphileptus qingdaoensis sp. nov., a marine form, is characterized by possessing oblong extrusomes with a conical anterior end, a single contractile vacuole and 5-7 left and 18-23 right kineties. In addition, a new population of Amphileptus orientalis Zhang et al., 2022, a freshwater representative, was documented and an improved diagnosis is provided. The phylogenetic analyses based on the SSU rDNA sequences imply that the genus Pseudoamphileptus is monophyletic whereas the genus Amphileptus is paraphyletic. The new molecular sequences presented here further support the establishment of two new species.


Assuntos
Cilióforos , Filogenia , DNA Ribossômico/genética , China , Água Doce
7.
Mar Life Sci Technol ; 5(2): 178-195, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37275546

RESUMO

Ciliates in the class Prostomatea play an important role in the global microbial loop due to their significant abundances and broad feeding strategies at the foundation of food webs. Despite their importance in ecosystems, the taxonomy and systematics of this group of ciliates has long been poorly understood, with this being especially true for members of the family Lagynusidae. Here we examine four lagynusids collected from sandy beaches in China, using silver-staining and 18S rRNA gene sequencing techniques. These investigations revealed two new genera and two new species and provided details for two little known forms: Penardella marina gen. nov., sp. nov., Apolagynus cucumis (as reported by Penard. Études sur les infusoires d'eau douce. Georg and Cie, Genève, 1922) gen. nov., comb. nov., Lagynus minutus sp. nov., and Lagynus elegans (Engelmann in Z Wiss Zool 11:347-393, 1862) Quennerstedt (Acta Univ Lund 4:1-48, 1867). Penardella gen. nov. can be morphologically distinguished by having more than three dikinetidal perioral kineties. Apolagynus gen. nov. differs from the closely related genus Lagynus in the absence of a conspicuous neck-like region. The ciliature of Apolagynus cucumis is revealed here for the first time, which demonstrates the classification of this species within Lagynusidae. Furthermore, Apolagynus binucleatus (Jiang et al., 2021) comb. nov. is established according to the new finding. The results of our phylogenetic analyses based on the 18S rRNA gene support the establishment of two new genera and indicate that Lagynusidae is monophyletic, which further strengthens its valid taxonomic status.

8.
Eur J Protistol ; 88: 125969, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36822126

RESUMO

Ciliated protists contain both germline micronucleus (MIC) and somatic macronucleus (MAC) in a single cytoplasm. Programmed genome rearrangements occur in ciliates during sexual processes, and the extent of rearrangements varies dramatically among species, which lead to significant differences in genomic architectures. However, genomic sequences remain largely unknown for most ciliates due to the difficulty in culturing and in separating the germline from the somatic genome in a single cell. Single-cell whole genome amplification (WGA) has emerged as a powerful technology to characterize the genomic heterogeneity at the single-cell level. In this study, we compared two single-cell WGA, multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in characterizing the germline and somatic genomes in ciliates with different genomic architectures. Our results showed that: 1) MALBAC exhibits strong amplification bias towards MAC genome while MDA shows bias towards MIC genome of ciliates with extensively fragmented MAC genome; 2) both MDA and MALBAC could amplify MAC genome more efficiently in ciliates with moderately fragmented MAC genome. Moreover, we found that more sample replicates could help to obtain more genomic data. Our work provides a reference for selecting the appropriate method to characterize germline and somatic genomes of ciliates.


Assuntos
Cilióforos , Genômica , Genômica/métodos , Células Germinativas , Rearranjo Gênico , Macronúcleo , Micronúcleo Germinativo , Cilióforos/genética
9.
Protist ; 173(5): 125909, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36208492

RESUMO

Three epibiotic Epistylis species, i.e., Epistylis weishanensis sp. nov., Epistylis daphniae Fauré-Fremiet, 1905, and Epistylis pygmaeum (Ehrenberg, 1838) Foissner et al., 1999, were investigated based on their living morphology, infraciliature, and small subunit (SSU) rDNA sequence data. Epistylis weishanensis sp. nov. is characterized by its double-layered peristomial lip, contractile vacuole located on the dorsal wall of the infundibulum, infundibular polykinety 3 (P3) composed of three equal-length rows that terminate above infundibular polykinety 1 (P1), 50-62 silverlines between the peristome and the trochal band, and about 30 silverlines between the trochal band and the scopula. Based on previous and newly obtained data for E. daphniae and E. pygmaeum, improved diagnoses and redescriptions are provided including, for the first time, data on their infraciliature. Phylogenetic analyses reveal that all three species do not group within the major clade of Epistylis, supporting the assertion that the genus Epistylis should be an assemblage of morphospecies and therefore needs to be revised.


Assuntos
Cilióforos , Oligoimenóforos , Lagos , Filogenia , Áreas Alagadas , Especificidade da Espécie , Cilióforos/genética , DNA Ribossômico/genética
10.
Eur J Protistol ; 85: 125910, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35939868

RESUMO

In the present study, a new freshwater peniculid species, Frontonia apoelegans sp. nov., and two other peniculid species, Frontonia atra (Ehrenberg, 1833) Bütschli, 1889 and Stokesia vernalis Wenrich, 1929, were isolated from Lake Weishan wetland, northern China. Their morphology and infraciliature are described based on live observations and silver staining methods. The SSU rRNA gene sequences are also provided. Frontonia apoelegans sp. nov. is recognized by the following combination of characteristics: two contractile vacuoles located right-dorsally, without collecting canals; peniculi 1 and 2 four-rowed, peniculus 3 three-rowed with leftmost row containing only one kinetosome; 62-76 somatic kineties; three ophryokineties; and four or five postoral kineties. We also provide improved diagnoses for Frontonia atra and Stokesia vernalis based on current and previous reports. Comparisons with sequences of morphologically similar species clearly support the validity of the new species. Phylogenetic analyses based on SSU rRNA gene sequence data reveal that Frontonia species with two contractile vacuoles cluster in a single clade, indicating these species may have a common origin. The family Frontoniidae is non-monophyletic whereas the family Stokesiidae remains monophyletic according to our analyses.


Assuntos
Cilióforos , Oligoimenóforos , China , Cilióforos/genética , DNA de Protozoário/genética , Genes de RNAr/genética , Oligoimenóforos/genética , Filogenia
11.
Zool Res ; 43(5): 827-842, 2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35993134

RESUMO

During faunal studies of psammophilic ciliates along the coast of Qingdao, China, several marine karyorelictean species were isolated. Among them, four species within the genus Remanella were investigated, including two species new to science: i.e., R. rugosa, Remanella elongata sp. nov., Remanella aposinica sp. nov., and R. unicorpusculata. Remanella rugosa has been reported several times, but this study is the first to provide detailed morphological characters and phylogenetics. Remanella elongata sp. nov. can be distinguished from its congeners by the presence of complex cortical granules, fewer macronuclei, and longer body size. Remanella aposinica sp. nov. differs from its congeners by having 14-17 right lateral ciliary rows and 24-37 dikinetids of intrabuccal kinety. Poorly known Remanella rugosa var. unicorpusculata (Kahl, 1933) Foissner, 1996 should be elevated from subspecies to species level, Remanella unicorpusculata (Foissner, 1996) stat. nov., based on detailed redescriptions with statistical data, living morphology, infraciliature, and species definitions. Small subunit (SSU) rDNA was sequenced for the four species, and phylogenetic analysis revealed that all known taxa in Remanella formed the outline branch to the genus Loxodes with moderate to high bootstrap support among Remanella lineages.


Assuntos
Cilióforos , Animais , China , Cilióforos/classificação , Cilióforos/genética , DNA Ribossômico/genética , Filogenia
12.
Eur J Protistol ; 85: 125906, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35932643

RESUMO

The class Litostomatea Small & Lynn, 1981 is a morphologically diverse ciliate group including hundreds of free-living and endocommensal species. The genera Acropisthium Perty, 1852 and Balantidion Eberhard, 1862 previously consisted of one free-living freshwater species each. Here, we not only highlight additional morphological features of the two type species, but also investigate a new species, Balantidion foissneri sp. nov., isolated from a river flowing through Lake Weishan, China, based on complementary methods, i.e., living morphology, stained preparations, and 18S rRNA gene sequence data. Balantidion foissneri sp. nov. can be distinguished from the type species, B. pellucidum Eberhard, 1862, by the body size (115-170 × 50-80 µm vs. 70-100 × 25-45 µm in B. pellucidum), oral bulge (distinct vs. indistinct), extrusome shape (filiform vs. rod-shaped), and the number of somatic kineties (46-60 vs. 25-40). In Balantidion species, pre-encystment trophonts show similarly-shaped polymorphic cytoplasmic lepidosomes destined to adorn the outer surface of the resting cyst. Based on the current knowledge, assignment of Balantidion to the family Acropisthiidae Foissner & Foissner, 1988 is proposed. In addition, phylogenetic analyses based on molecular data show that the two Balantidion species form a fully-supported clade to which Acropisthium mutabile has a sister relationship.


Assuntos
Cilióforos , China , Água Doce , Filogenia , RNA Ribossômico 18S/genética
13.
Front Microbiol ; 13: 775646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265055

RESUMO

Gene-sized chromosomes are a distinct feature of the macronuclear genome in ciliated protists known as spirotrichs. These nanochromosomes are often only several kilobase pairs long and contain a coding region for a single gene. However, the ways in which transcription is regulated on nanochromosomes is still largely unknown. Here, we generated macronuclear genome assemblies for two species of Pseudokeronopsis ciliates to better understand transcription regulation on gene-sized chromosomes. We searched within the short subtelomeric regions for potential cis-regulatory elements and identified distinct AT-rich sequences conserved in both species, at both the 5' and 3' end of each gene. We further acquired transcriptomic data for these species, which showed the 5' cis-regulatory element is associated with active gene expression. Gene family evolution analysis suggests nanochromosomes in spirotrichs may originated approximately 900 million years ago. Together our comparative genomic analyses reveal novel insights into the biological roles of cis-regulatory elements on gene-sized chromosomes.

16.
Mar Life Sci Technol ; 4(3): 317-328, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37073165

RESUMO

Ciliated protists are ideal material for studying the origin and evolution of sex, because of their nuclear dimorphism (containing both germline micronucleus and somatic macronucleus in the same cytoplasm), special sexual processes (conjugation and autogamy), and high diversity of mating-type systems. However, the study of sexual process is limited to only a few species, due to the difficulties in inducing or observing conjugation. In the present study, we investigate the conjugation process in Paramecium multimicronucleatum: (1) of the three prezygotic divisions, all micronuclei undergo the first two divisions (meiosis I, II), while a variable number of nuclei undergo the third division (mitosis); (2) the synkaryon divides three times after fertilization, giving rise to eight products that differentiate into four macronuclear anlagen and four micronuclei; (3) cells restore the vegetative stage after two successive cell fissions during which the macronuclear anlagen are distributed into daughter cells without division, while micronuclei divide mitotically; (4) the parental macronucleus begins to fragment following the first meiotic division and finally degenerates completely; (5) the entire process takes about 110 h, of which about 85 h are required for macronuclear development. In addition, we describe for the first time the process of genomic exclusion occurring between amicronucleate and micronucleate cells of P. multimicronucleatum, during which the micronucleate cell contributes a pronucleus to the amicronucleate cell, resulting in both exconjugants being homozygotes. These results provide new insights into the diversity of sexual processes and lay an important cytological basis for future in-depth studies of mating systems in ciliates.

17.
Mar Life Sci Technol ; 4(2): 179-200, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-37073218

RESUMO

The ciliate genus Pleuronema comprises approximately 30 nominal species and has been reported in freshwater, brackish water, and marine habitats. Nevertheless, recent studies have indicated that there might be a large undiscovered species diversity. In the present work, four new Pleuronema species, namely P. foissneri sp. nov., P. parasmalli sp. nov., P. parasalmastra sp. nov., and P. paraorientale sp. nov., collected from Shenzhen, southern China, was investigated using taxonomic methods. The diagnosis, description, comparisons with morphologically related species and detailed morphometric data are supplied for each. The small subunit ribosomal RNA (SSU rRNA) gene of the four new species is sequenced and their molecular phylogeny is analyzed. The SSU rRNA gene tree shows that Pleuronema is polyphyletic comprising several separate clades. All four new species cluster consistently with P. orientale KF206429, P. puytoraci KF840520 and P. setigerum FJ848874 within the core Pleuronematidae + Peniculistomatidae clade. Phylogenies of Pleuronematidae-related taxa are also discussed. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00130-5.

18.
Mar Life Sci Technol ; 4(4): 513-526, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37078078

RESUMO

Ciliates are unique single-celled organisms that play important roles in ecological, environmental, evolutionary, and ontogenetic research. In the present study, phylogenetic analyses based on 18S rRNA gene sequence data reveal that Chaetospira sinica sp. nov. clusters with Stichotricha aculeata with strong to full support (97% ML, 1.00 BI), but is not closely related to members of Spirofilidae Gelei, 1929 to which Chaetospira and Stichotricha have previously been assigned. Phylogenetic analyses, together with morphological and morphogenetic data from Chaetospira sinica sp. nov., support the validity of family Chaetospiridae Jankowski, 1985. Chaetospira and Stichotricha are here assigned to the family Chaetospiridae, the improved diagnosis of which is as follows: non-dorsomarginalian Hypotrichia with flask-shaped body; oral region extending along narrow anterior neck region; lorica usually present; two ventral and two marginal cirral rows, all distinctly spiraled or obliquely curved; pretransverse and transverse cirri absent. The basic morphogenetic features in C. sinica sp. nov. can be summarized as: (1) the oral primordium for the opisthe develops de novo and the parental adoral zone is completely retained by the proter; (2) all ventral cirral anlagen and marginal anlagen developed intrakinetally; (3) three dorsal kineties anlagen formed intrakinetally in each daughter cell; and (4) macronuclear nodules fuse into a single mass. Exconjugant cells were also isolated and their morphologic and molecular data are provided.

19.
Mar Life Sci Technol ; 4(4): 493-512, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37078079

RESUMO

Anaerobic protists in general, and ciliates in particular, are important components of anoxic or hypoxic environments, however, their diversity remains underestimated. Sonderia is a poorly studied genus that is distributed worldwide and is commonly found in anaerobic environments. In the present study, the taxonomy and phylogeny of three new species, namely Sonderia aposinuata sp. nov., Sonderia paramacrochilus sp. nov. and Sonderia steini sp. nov., collected from China, were investigated based on microscopic observations and SSU rRNA gene sequencing methods. Sonderia aposinuata sp. nov. is diagnosed mainly by having a relatively large body size, a crescent-shaped oral opening, numerous slender extrusomes, one suture on the ventral side and two on the dorsal side, and a buccal cavity that occupies the anterior third of the cell. Sonderia paramacrochilus sp. nov. closely resembles S. macrochilus but differs mainly by its oral opening being located closer to the anterior cell margin and its spindle-shaped extrusomes. Sonderia steini sp. nov. is a freshwater species that can be recognized by its shallow buccal cavity, sparsely distributed rod-shaped extrusomes, and having 68-79 monokinetidal somatic kineties that form sutures on both sides of the body. Phylogenetic analyses based on small subunit ribosomal RNA (SSU rRNA) gene sequence data support the monophyly of the family Sonderiidae, however, Sonderia is paraphyletic. The genus Sonderia is briefly revised and a key to the identification of species belonging to this genus is supplied.

20.
Mar Life Sci Technol ; 4(4): 527-535, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37078083

RESUMO

Ciliated protists are one of the most diverse and highly differentiated group among unicellular organisms. Doublets occur in ciliates when two cells fuse into a single individual. Doublets contain two major cellular components (either cell in a doublet) and have traditionally been considered as developmental anomalies. Nevertheless, doublets can divide or even conjugate effectively, which may represent dispersal forms of the life stages. In addition, morphogenesis, as an important process in the life cycle, will provide important insights into the complex differentiation mechanism and various physiological phenomena. However, morphogenetic studies focusing on doublets of ciliates are very limited, which has become an obstacle to understand their complete life history. Here we isolated a doublet strain from the marine species Euplotes vannus (Müller, 1786) Diesing, 1850 and investigated its morphogenetic events during asexual reproduction. Our results indicate that: (1) the opisthe's oral primordium develops de novo beneath the cortex; (2) the frontoventral and transverse cirral anlagen, cirrus I/1, and marginal anlagen in both dividers develop de novo separately; (3) the dorsal kinety anlagen, the three rightmost ones of which produce three caudal cirri for the proter, occur within the parental structures in the mid-body region; (4) the opisthe acquires two caudal cirri, one from the end of each two rightmost kineties; and (5) there are two macronuclei and one micronucleus in the doublet and they divide amitotically and mitotically, respectively. Finally, we speculate that this special differentiation may be an adaptive form to adverse environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA